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Abstract. Accurate brain tumor segmentation is essential for effective
diagnosis and treatment planning. This study proposes DE-UNet, an en-
hanced U-Net architecture optimized using Differential Evolution (DE)
to improve segmentation of multimodal MRI scans. The model was eval-
uated on two benchmark datasets: Figshare Brain Tumor Segmentation
(FBTS) and BraTS 2021 datasets, focusing on whole tumor segmen-
tation across four MRI modalities: FLAIR, T1, T1-CE, and T2. DE-
UNet outperformed state-of-the-art methods, achieving Dice Similarity
Coefficient (DSC) and Jaccard Index (JI) scores of 0.9160/0.8472 on
FBTS and 0.9094/0.8371 on BraTS 2021. DE effectively optimized key
hyperparameters—learning rate, dropout, batch size, and filter sizes—
enhancing the model generalization across tumor types and imaging con-
ditions. Visual analysis confirmed accurate tumor boundary delineation.
These results highlight the potential of DE-UNet as a robust and precise
tool for clinical brain tumor segmentation.

Keywords: Brain Tumor Segmentation · Differential Evolution · MRI
Modalities · U-Net Optimization · Medical Image Analysis.

1 Introduction

Accurate brain tumor segmentation is crucial for diagnosis, treatment planning,
and prognosis [15]. MRI is widely used due to its superior soft tissue contrast
and non-invasive nature [3], but manual segmentation is time-consuming, sub-
jective, and inconsistent [9]. Tumor heterogeneity further complicates the task,
emphasizing the need for reliable automated methods [7].

U-Net and its variants have shown strong performance in medical image
segmentation [19, 21], but limitations persist in hyperparameter tuning, han-
dling class imbalance, and adapting to multimodal MRI. Recent models like
DeepLabV3+[23] and U-Net extensions[22] improve performance but remain
suboptimal for multi-class and multi-modal cases. Metaheuristics such as PSO [20]
and GA [10] aid tuning but often converge prematurely [6], whereas Differential
Evolution (DE) offers more robust and adaptive optimization [12, 16].
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This study introduces DE-UNet, a U-Net architecture optimized via DE to
improve segmentation of multimodal MRI brain tumor images. Evaluated on
the FBTS and BraTS 2021 datasets, it targets whole tumor segmentation across
classes and modalities, achieving superior Dice Similarity Coefficient (DSC) and
Jaccard Index (JI) compared to state-of-the-art methods. Section 2 details the
proposed framework and datasets, Section 3 presents results and comparisons,
and Section 4 concludes the study.

2 Methods

The proposed DE-UNet was evaluated on two benchmark datasets (Fig. 1): the
Figshare Brain Tumor Segmentation (FBTS) [5] and BraTS 2021[2], selected for
their diversity in tumor types and MRI modalities. FBTS includes 3064 slices
labeled as Meningioma (708), Glioma (1426), and Pituitary (930), each with
expert-annotated binary masks. BraTS 2021 comprises 1251 multimodal slices
across T1, T1-CE, T2, and FLAIR, with corresponding whole tumor masks.

Fig. 1: Sample images from the datasets: (a) FBTS and (b) BraTS 2021.

All images were resized to 256 × 256 pixels using bicubic interpolation [21],
and intensities were normalized to [0, 1] to reduce scanner-induced variability.
Segmentation masks were binarized to separate tumor from background. This
standardized preprocessing enhanced contrast, reduced noise, and ensured con-
sistent inputs for training and evaluation.

DE-UNet integrates a U-Net backbone with Differential Evolution (DE) to
optimize four hyperparameters: learning rate, dropout rate, batch size, and num-
ber of filters. The architecture follows an encoder-decoder structure with skip
connections and bottleneck dropout [20], as shown in Fig. 2.

Fig. 2: DE-UNet: Encoder-decoder architecture with skip connections.
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Algorithm 1 DE Algorithm for U-Net hyperparameter optimization.
Require: NP , F , CR, G
Ensure: Optimized hyperparameter configuration x∗

1: Initialize a population of NP candidate solutions within predefined bounds.
2: for generation g = 1 to G do
3: for each candidate solution xi in the population do
4: Mutation: Randomly select 3 distinct solutions (xa, xb, xc) from the population.
5: Generate mutant vector: vi = xa + F · (xb − xc)
6: Crossover: Generate trial vector ui as:

uij =

{
vij if rand(0, 1) < CR or j = jrand

xij otherwise

7: Selection: Replace xi with ui if f(ui) < f(xi)
8: end for
9: end for
10: Return the best-performing solution x∗

DE was configured with a population size of NP = 5, mutation factor
F = 0.8, crossover probability CR = 0.9, and a maximum of G = 10 gener-
ations. Continuous parameters (learning rate: [10−5, 10−2], dropout: [0.1, 0.5])
were mutated within bounds, while discrete parameters (batch size: 8, 16, 32, 64;
filters: 16, 32, 64, 128) were rounded post-mutation. The hyperparameter ranges
were selected based on prior studies [4, 20] and validated empirically. Optimiza-
tion was performed separately on the FBTS and BraTS 2021 datasets.

The search minimized a composite loss: Ltotal = 1 − α · DSC − (1 − α) · JI,
where α = 0.5 balances overlap accuracy (Dice Similarity Coefficient, DSC)
and boundary agreement (Jaccard Index, JI). This objective encourages robust
segmentation across tumor types and modalities. The DE operations—mutation,
crossover, and selection—are detailed in Algorithm 1, which iteratively returns
the best-performing configuration x∗ for final training and evaluation.

DE-UNet was evaluated on the FBTS and BraTS 2021 datasets using a
server with 8 NVIDIA A100-SXM4-40GB GPUs. All images and masks were
resized to 256 × 256 pixels, converted to three-channel format, and normalized
to [0, 1]. An 80/20 training-validation split was applied. During the DE search,
each candidate configuration was trained for 10 epochs to evaluate validation
performance.

The model was trained using the Adam optimizer and binary cross-entropy
loss, with DE optimizing the learning rate, dropout rate, batch size, and filter
size. After selecting the best configuration, final training and evaluation were
performed on both datasets.

Model performance was assessed using Accuracy, Dice Similarity Coefficient
(DSC), and Jaccard Index (JI) [19, 20, 18].Higher DSC and JI indicate stronger
overlap between predicted and ground truth masks. Evaluation was performed
per tumor class in FBTS (Meningioma, Glioma, Pituitary) and per modality in
BraTS 2021 (FLAIR, T1, T1-CE, T2) to assess robustness and generalization.
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(a) Scatter matrix of hyperparameters. (b) Scatter matrix of evaluation metrics.

Fig. 3: Effect of DE-tuned hyperparameters on model performance (red: best).

3 Results and Discussion

Differential Evolution (DE) was applied to optimize four U-Net hyperparameters:
learning rate, dropout rate, batch size, and initial filter count. Performance was
assessed using training and validation accuracy and Dice-based loss.

Fig. 3 visualizes the influence of these hyperparameters on the performance.
The hyperparameter matrix (Fig. 3a) shows that learning rate and dropout were
the most sensitive, directly impacting the convergence. Batch size and filter count
affected the training stability and efficiency. The performance matrix (Fig. 3b)
highlights how small hyperparameter shifts can yield notable gains in validation
accuracy and Dice scores.

The optimal configuration—learning rate 0.009094, dropout 0.286, batch size
30, and 102 filters—achieved the training accuracy of 0.9302, the validation
accuracy of 0.9788, and the validation Dice loss of 0.0024. Among all parameters,
the learning rate and the dropout had the strongest impact on generalization,
while batch size and filter count mainly influenced the training dynamics.

The DE-optimized U-Net was evaluated on the FBTS and BraTS 2021 datasets
to assess segmentation performance across diverse tumor types and MRI modal-
ities. Table 1 presents the results on the FBTS dataset. The model achieved
consistently high accuracy, Dice Similarity Coefficient (DSC), and Jaccard Index
(JI) across all tumor classes. Meningioma achieved the best DSC (0.9348), while
Glioma—despite its irregular morphology—maintained strong performance. Pi-
tuitary tumors exhibited stable, near-perfect accuracy and overlap.

Table 2 summarizes the performance on BraTS 2021 before and after ex-
tended training. Improvements are shown as percentage point (pp) gains. T1
and T2 exhibited the largest relative gains, particularly in DSC and JI. T1-CE
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Table 1: Performance metrics on the FBTS dataset.
Tumor Type Training Validation

Accuracy Loss DSC JI Accuracy Loss DSC JI
Meningioma 0.9983 0.0042 0.9286 0.8677 0.9984 0.0038 0.9348 0.8784
Glioma 0.9971 0.0070 0.9023 0.8231 0.9968 0.0080 0.8943 0.8103
Pituitary 0.9991 0.0022 0.9183 0.8509 0.9991 0.0021 0.9200 0.8539

Table 2: Performance on BraTS 2021 before and after extended training.
Modality Training Validation

Accuracy (pp) Loss (pp) DSC (pp) JI (pp) Accuracy (pp) Loss (pp) DSC (pp) JI (pp)
FLAIR 0.9956 (+0.18) 0.0110 (-0.47) 0.8941 (+4.31) 0.8103 (+7.21) 0.9961 (+0.15) 0.0095 (-0.37) 0.9068 (+3.31) 0.8304 (+5.69)
T1 0.9935 (+0.32) 0.0157 (-0.79) 0.8464 (+7.58) 0.7353 (+12.12) 0.9930 (+0.39) 0.0168 (-0.96) 0.8327 (+9.07) 0.7154 (+14.3)
T1-CE 0.9950 (+0.34) 0.0119 (-0.82) 0.8823 (+8.05) 0.7900 (+13.86) 0.9940 (+0.43) 0.0147 (-1.06) 0.8576 (+10.37) 0.7524 (+17.34)
T2 0.9946 (+0.28) 0.0135 (-0.72) 0.8707 (+6.65) 0.7714 (+11.1) 0.9942 (+0.34) 0.0147 (-0.89) 0.8602 (+7.97) 0.7550 (+13.23)

achieved the highest overall segmentation accuracy (DSC: 0.9613, JI: 0.9258),
highlighting the benefit of contrast-enhanced imaging. These results validate DE-
UNet’s effectiveness across MRI modalities and tumor structures. These findings
are consistent with prior studies showing that modality contrast significantly in-
fluences segmentation quality [20].

The DE-optimized U-Net was evaluated on the FBTS and BraTS 2021 test
sets using Accuracy, Loss, Dice Similarity Coefficient (DSC), and Jaccard In-
dex (JI). Table 3 summarizes the model’s final test performance. On the FBTS
dataset, Meningioma achieved the highest DSC (0.9410) and JI (0.8895), while
Pituitary showed the best accuracy (0.9991). Glioma remained more challenging
due to its irregular morphology, resulting in the lower DSC (0.8922).

Table 3: Test performance of the DE-optimized U-Net model.
Class Accuracy Loss DSC JI Modality Accuracy Loss DSC JI
Meningioma 0.9985 0.0035 0.9410 0.8895 FLAIR 0.9976 0.0058 0.9447 0.8956
Glioma 0.9966 0.0083 0.8922 0.8069 T1 0.9969 0.0073 0.9277 0.8657
Pituitary 0.9991 0.0020 0.9148 0.8451 T1-CE 0.9983 0.0041 0.9634 0.9297

T2 0.9976 0.0058 0.9399 0.8873

For BraTS 2021, the T1-CE modality achieved the highest segmentation
performance (DSC: 0.9634, JI: 0.9297), benefiting from enhanced tumor contrast.
FLAIR and T2 also performed well in delineating edema regions. T1 showed
comparatively lower overlap metrics but remained effective in less complex cases.

Fig. 4 presents qualitative segmentation results, comparing ground truth (red
contours) with predicted masks (green contours). The model produced high-
quality segmentations across all tumor types and modalities, with T1-CE and
FLAIR showing the closest alignment. Despite Glioma complexity, prediction
masks demonstrated strong overlap with expert annotations. These results con-
firm the model’s robustness in handling modality-specific and tumor-type vari-
ations. DE-UNet adapts well to anatomical complexity, achieving reliable seg-
mentations suitable for clinical diagnostic support.
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Meningioma Glioma Pituitary FLAIR T1 T1-CE T2
DSC: 0.9368 DSC: 0.9582 DSC: 0.9567 DSC: 0.9694 DSC: 0.9556 DSC: 0.9699 DSC: 0.9762
JI: 0.8811 JI: 0.9198 JI: 0.9169 JI: 0.9405 JI: 0.9150 JI: 0.9416 JI: 0.9536

Fig. 4: Qualitative results of DE-UNet (red: ground truth, green: prediction).

Table 4: Comparison of DE-UNet with state-of-the-art models.
Method FBTS Dataset Method BraTS 2021

DSC JI DSC JI
Proposed DE-UNet 0.9160 0.8472 Proposed DE-UNet 0.9094 0.8371
DeepLabV3+Xception [23] 0.8115 0.8018 UNet [8] 0.8600 0.7807
KFCM-CNN [14] 0.8884 0.8204 U-Net base [25] 0.9080 -
U-Net based [1] 0.8900 0.8100 SPPNet-2 [25] 0.9040 -
MST-based [13] 0.8469 0.7443 UNCE-NODE [17] 0.8949 -
U-Net with ResNet [11] 0.9011 - nnU-Net [24] 0.8900 -

Table 4 compares the proposed DE-UNet against state-of-the-art (SOTA)
methods on the FBTS and BraTS 2021 datasets. DE-UNet outperformed all
baselines across Dice Similarity Coefficient (DSC) and Jaccard Index (JI), demon-
strating superior segmentation accuracy.

On the FBTS dataset, DE-UNet achieved the DSC of 0.9160 and the JI of
0.8472, outperforming the previous best model, U-Net with ResNet [11] (DSC:
0.9011). For BraTS 2021, DE-UNet scored 0.9094 in DSC and 0.8371 in JI,
exceeding prior models such as UNet [8] and modular approaches such as UNCE-
NODE [17]. These improvements reflect the impact of differential evolution (DE)
in dynamically tuning learning rate, dropout, batch size, and filter count, unlike
traditional static or manually configured models.

DE-UNet’s modality-agnostic architecture and deeper encoder-decoder de-
sign contribute to its robust performance across MRI modalities (FLAIR, T1,
T1-CE, T2). The model captures fine tumor boundaries without requiring moda-
lity-specific preprocessing or architectural modifications. These strengths en-
hance generalization to diverse tumor characteristics and support clinical appli-
cability, positioning DE-UNet as a competitive and practical solution for brain
tumor segmentation.

4 Conclusions

This study proposed DE-UNet, a U-Net architecture enhanced with Differential
Evolution (DE) for optimized brain tumor segmentation. By automatically tun-
ing key hyperparameters—learning rate, dropout, batch size, and filters—DE-
UNet achieved superior performance on the FBTS and BraTS 2021 datasets,
with DSC of 0.9160 and 0.9094, respectively. The model demonstrated strong
generalization across MRI modalities (FLAIR, T1, T1-CE, T2) and tumor types,
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outperforming several state-of-the-art methods. Visual results confirmed accu-
rate tumor boundary alignment with expert annotations. These findings high-
light the effectiveness of DE-driven optimization in medical image segmentation.
Future work will explore hybrid metaheuristics and validation on larger, multi-
modal datasets to enhance clinical applicability.
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