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Abstract. This paper introduces a novel machine learning-based methodology to 

determine the operational range of planar microstrip antennas of randomly gen-

erated designs, removing the need for electromagnetic (EM) simulations or ex-

pert knowledge. Framed as a multi-label classification task, the proposed ap-

proach addresses the inefficiencies of traditional methods, which are prone to 

high computational cost and engineer’s bias. The method quickly identifies 

promising designs, paving the way for subsequent optimization. This advance-

ment represents a significant step toward automating antenna design processes. 
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1 Introduction 

Machine learning (ML) techniques have been widely used in communications, includ-

ing antenna selection, malicious event detection, and mobility prediction. Applications 

such as SVM-based speech recognition and context-aware Internet of Things (IoT) 

show their flexibility. Deep learning has also impacted UAVs [1], THz communication 

[2], Wi-Fi [3], GPS [4], satellites [5], and IoT [6,7]. 

Antennas are essential for efficient signal transmission. Traditional design involves 

manual, iterative steps—substrate selection, shape definition, and parametric tuning—

which are time-consuming, suboptimal, and prone to human bias. Automated, specifi-

cation-driven methods use optimization algorithms [8–11] to improve designs but face 

challenges like geometry selection, dimensionality, and computation cost. 

Automatically generated antennas follow two main models: compositions of basic 

shapes (e.g., rectangles or triangles) [12,13] and coordinate-based representations (e.g., 

splines or line segments) [14–16]. This work focuses on the latter, which allows flexi-

bility but introduces issues: self-intersecting shapes, initializing geometry, and high di-

mensionality. Metaheuristics [16,17] partially address these but remain limited by elec-

tromagnetic (EM) simulation costs.  

With no exact formulae for antenna topology, initial designs rely on heuristic or lit-

erature-based shapes—again introducing bias. Accurate evaluation requires EM solv-

ers, which are costly. Surrogate models [14,18] help, but dimensionality and bias persist 

[19]. More on this topic can be found in [20-24]. 
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ML can accelerate designing process by reducing simulation time and predicting 

antenna behavior. This paper introduces an ML-based framework to evaluate random 

designs, identify promising geometries for the desired antenna operating range for fur-

ther optimization, and minimize reliance on EM simulations. It handles designs with 

103 parameters, going beyond traditional methods and engineering bias. 

The goal is to build an AI-driven system for antenna design and analysis. The system 

aims to: (1) evaluate random designs without EM simulations, (2) generate designs via 

generative models, (3) predict antenna responses, and (4) optimize designs via AI. This 

will enable high-performance, unbiased, fully automated antenna design. 

 This article addresses the first part of the full system: determining an antenna's 

operating range from a random design, without EM simulation or expert input. Random 

generation can yield novel, effective designs. However, most are unsuitable, and filter-

ing them traditionally requires expert knowledge or costly EM simulations. This work 

proposes a fast ML-based method to estimate the operational range of random designs, 

enabling quick identification of viable candidates for further optimization. 

The contributions are: (1) a methodology for estimating operational range of anten-

nas with random designs via multi-label classification, (2) dataset preparation steps, (3) 

two neural network architectures—one high-accuracy , one lightweight, (4) training 

process details to facilitate reproducibility, (5) extensive experimental results. 

2 Related Work 

In [25,26], ML was applied to optimize antenna design, assuming an initial design 

based on expert knowledge, with the operational frequency range predetermined. This 

paper addresses the earlier stage—automating the search for an initial design without 

expert knowledge, which can later be optimized using methods like those in [25,26]. 

The work in [27,28] introduced an ML-based antenna synthesis method in three 

stages: parameter prediction, antenna type classification (e.g., rectangular, horn), and 

design synthesis. A decision tree classifier was used in [27], while stacking ensemble 

learning was applied in [28]. The success of neural networks in classification influenced 

the approach of this paper. 

In [29], a survey addressed the regression problem of estimating antennas' frequency 

responses from designs, using MSE for evaluation. This paper reframes it as a multi-

label classification problem, making direct comparison infeasible. In [29], linear re-

gression, support vector regression, polynomial regression, neural networks, and ge-

netic algorithms, were compared demonstrating that neural networks are the most 

promising approach, which guided the choice of techniques used in this research. 

An overview of methods for optimizing antenna designs through regression analysis 

for various types, including microstrip and patch antennas, was provided in [30]. While 

direct comparisons with the proposed method are not possible, methods such as support 

vector machines, Bayesian regularization, and neural networks discussed therein may 

prove valuable for future research. 

Comprehensive reviews of ML methods applied to antenna design and optimization 

are available in [31,32], offering broad insights into this field. 
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3 Dataset 

Planar microstrip antennas are analog devices, and their reflection characteristics over 

a given frequency range are obtained via EM simulations. An antenna is considered 

suitable for further optimization if its reflection coefficient is below θR = −3dB and its 

relative bandwidth exceeds θW = 0.1 This study introduces a dataset of 106,351 pseudo-

random antenna designs with labels indicating whether each sub-band (ten 0.5 GHz 

sub-bands within 3–8 GHz range) meets both conditions, marking it as suitable for op-

eration and further optimization. Examples are presented in Fig. 1. 

 

Fig. 1. Example of antenna design (blue – vertices, red – feed point) and antenna response. 

A design is a 103-element vector representing an antenna: D = [α, qx, qy, vx, vy], 

where α ∈ ⟨24,36⟩ is an integer scaling factor, qx, qy are feed point coordinates, and vx, 

vy are 50-element vectors of normalized vertex coordinates (∈ <−1, +1>). Physical di-

mensions are given by α∙[vx, vy] and α∙[qx, qy] in mm. Scaling by α shifts resonance 

frequencies [18,34]. Designs were generated quasi-randomly [10,11], ensuring no self-

intersections and a valid connection between the feed point and the shape. 

A label vector is a 10-element vector indicating the antenna’s operational range:  

B = [bg ∈ {0,1}], g = 1,…,10, where bg = 1 indicates the assignment of the g-th label. 

The set of labels represents ranges from 3.0 GHz to 8.0 GHz, in 0.5 GHz intervals. 

To assign labels to the designs, antenna reflection responses R [dB] were computed 

for the frequency range F [GHz] (see Fig. 1) using EM simulations for 20,000 designs 

D with α = 30. Simulations were performed using CST Microwave Studio [33], an EM 

solver based on the Finite Integration Technique [9-11]. To avoid additional costly sim-

ulations, responses for other α values were estimated using scaling [18,34]. This can be 

seen as data augmentation. The computational cost and slight errors in the response 

amplitude of this interpolation method are negligible. A label vector B for a given de-

sign D was then assigned using the following algorithm. 

1. Compute the set of frequency ranges Z for which ri ≤ θR: 
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 Z = {zk = [fLk, fUk]}, k = 1,…,m, (1) 

 Lk = min{i ∣ ri ≤ θR ∧ (i = 1 ∨ ri-1 > θR)}, i = 1,…,n, k = 1,…m, (2) 

 Uk = max{i ∣ ri ≤ θR ∧ (i = n ∨ ri+1 > θR)}, i = 1,…,n, k = 1,…m, (3) 

where fLk and fUk are the lower and upper bounds for the k-th frequency range. 

2. Compute the set of central frequencies C for each range [fLk, fUk] as: 

 C = {fCk = (fLk + fUk) / 2, ∀[fLk, fUk] ∈ Z}, k = 1,…m. (4) 

3. Compute the set of relative widths W for each frequency range in Z as: 

 W = {wk = ∣fUk − fLk∣ / fCk, ∀[fLk, fUk] ∈ Z, fCk ∈ C}, k = 1,…m. (5) 

4. Define the label set A as frequency ranges: 

 A = {ag = [aLg, aUg]}, g = 1,…,10 = {[3.0, 3.5],…,[7.5, 8.0]} [GHz], (6) 

where ag is the g-th label, aLg and aUg are the bounds for the g-th label. 

5. Compute the set of labels T ⊆ A that the design must be tagged as: 

 T = {ag ∣ wk ≥ θW ∧ ((aLg < fCk  < aUg) ∨ (fLk < aLg ∧ aUg < fUk))}, (7) 

where θW ∈ <0,1> is the minimal acceptable relative width threshold. 

6. Compute the binary label vector B as: B = [bg = 1T(ag)], g = 1,…,10, where 1T(ag) 

is the indicator function. 

An antenna can operate across multiple subranges or have several disjoint ranges; 

thus, it is a multi-label classification problem, not a multi-class one. Each design in the 

dataset can be tagged with multiple labels. The dataset is available in [35]. 

4 Learning Parameters and Model 

The proposed method takes a 103-parameter antenna design vector D as input and pro-

duces a 10-parameter label prediction vector P as output. Before entering the model, 

the design parameters are normalized to the <0,1> range. The model outputs probability 

scores S = [sg ∈ <0,1>], g = 1,…,10, where sg represents the likelihood that the design 

corresponds to the g-th label. Label predictions P are obtained by thresholding S at θP 

= 0.5: P = [pg = 1 if sg > θP else 0], g = 1,…,10.  

The dataset was split into training set (90%) and test set (10%). The training set was 

used for 10-fold cross-validation. Metrics such as training loss, training accuracy, val-

idation loss, and validation accuracy were recorded, and average values across all folds 

were computed. The best model, with the lowest validation loss, was selected and tested 

on the test set, where overall and label-specific accuracy were calculated. 

Early stopping, based on validation loss, was applied to prevent overfitting and re-

duce training time by halting when no improvement was observed. L2 regularization 

with weight decay was also used to discourage large weights, promoting generalization 
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and simpler models. A learning rate scheduler dynamically adjusted the learning rate 

to ensure stable convergence and avoid overshooting. 

Initial learning parameters were chosen based on the author’s experience, and later 

fine-tuned using grid search. The parameters in Table 1 yielded the best results. The 

experiments were run on Python 3.11.0 with PyTorch 2.0.1+cu118, utilizing Nvidia 

GeForce GTX 1080 Ti GPU and CUDA driver 12.2. 

Table 1. Learning parameters. 

Learning parameter Value Learning parameter Value 

Batch size 64 LR scheduler ReduceLROnPlateau 

Loss function BCE LR scheduler factor 0.1 

Solving algorithm Adam LR scheduler patience 5 

Initial LR 1e−3 Max epochs 1000 

Weight decay 1e−7 Early stopping patience 15 

Table 2. Structures of the proposed models. 

NN#1 (129,327,626 parameters) NN#2 (29,814,794 parameters) 

Fully Connected (FC) layer, 103 neurons Fully Connected (FC) layer, 103 neurons 

FC, 8192 neurons, LeakyReLU, 0.06 dropout FC, 4096 neurons, LeakyReLU, 0.06 dropout 

FC, 8192 neurons, LeakyReLU, 0.06 dropout FC, 4096 neurons, LeakyReLU, 0.06 dropout 

FC, 4096 neurons, LeakyReLU, 0.06 dropout FC, 2048 neurons, LeakyReLU, 0.06 dropout 

FC, 4096 neurons, LeakyReLU, 0.06 dropout FC, 2048 neurons, LeakyReLU, 0.06 dropout 

FC, 2048 neurons, LeakyReLU, 0.06 dropout FC, 10 neurons, Sigmoid 

FC, 1024 neurons, LeakyReLU, 0.06 dropout  

FC, 512 neurons, LeakyReLU, 0.06 dropout  

FC, 10 neurons, Sigmoid   

Due to the small number of input and output parameters and the multi-label classifi-

cation nature, a classical neural network (NN) model, specifically a multi-layer percep-

tron, was chosen. Two models were trained: NN#1 aimed for the highest accuracy, 

while NN#2 sought similar accuracy with fewer learnable parameters. Various NN ar-

chitectures were tested, differing in layers, neurons, activations, weights initialization, 

dropout, and more. The best results were obtained with the structures in Table 2. 

The model architecture was designed with input and output layers matching the da-

taset features. The number of hidden layers and neurons balanced model complexity 

and performance, as more layers and neurons increase capacity but also the risk of 

overfitting and computational cost. Various activation functions were tested, with 

LeakyReLU showing the best performance. Weights were initialized using the Kaiming 

uniform distribution. Dropout layers were added to reduce overfitting by randomly de-

activating neurons during training, promoting diverse feature extraction. The output 

layer used a sigmoid activation for class probability interpretation. 
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5 Results 

Table 3 compares results for models NN#1 and NN#2. Key metrics include label-spe-

cific accuracy (per-label performance) and overall accuracy (their average). The table 

also lists average runtime per sample, covering the entire pipeline: preprocessing, ten-

sor conversion, GPU transfer, classification, and result extraction. For reference, a sin-

gle EM simulation takes ~60–90 s per design. 

NN#1 reached 93.55% overall accuracy, slightly outperforming NN#2 (93.31%). 

Despite this, NN#2 uses 100 million fewer parameters, offering similar accuracy with 

lower memory usage and computational cost—beneficial for large-scale use. It should 

be noted that the models assess whether designs are suitable starting points for optimi-

zation. Refining their frequency responses remains outside this work's scope. 

Table 3. Results of the experiments. 

Model NN#1 NN#2 

Avg. training accuracy 91.76% 87.82% 

Avg. validation accuracy 89.54% 85.36% 

Training accuracy (best fold) 97.33% 97.56% 

Validation accuracy (best fold) 93.36% 93.04% 

Test label-specific accuracy [96.91, 94.77, 94.80, 95.51, 

95.90, 93.50, 91.18, 91.39, 

91.93, 89.65] % 

[96.79, 95.04, 95.20, 95.75, 

95.83, 93.45, 90.52, 90.39, 

91.00, 89.15] % 

Test overall accuracy 93.55% 93.31% 

Avg. runtime per sample 0.0026 s 0.0012 s 

6 Conclusions 

This work introduced a method for estimating operational frequency ranges for planar 

microstrip antennas with randomly generated designs, bypassing EM simulations and 

expert input. Framing the task as multi-label classification enables fast, low-cost iden-

tification of designs suitable for further optimization. 

Future work includes testing on diverse datasets, exploring various random design 

algorithms, and developing a 2D-CNN classifier due the spatial nature of antenna to-

pologies. Additional plans involve creating a label-to-design generator via an autoen-

coder with classification support, predicting antenna responses without EM simula-

tions, and building ML-based optimization methods to replace numerical approaches. 
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