
Data-Centric Parallel Programming Abstractions for
High Performance Computations

Domenico Talia[0000-0003-1910-9236]

University of Calabria, Via P. Bucci 41C, Rende 87036, Italy
domenico.talia@unical.it

Abstract. This short paper describes the programming paradigm and the main
constructs of the DCEx programming model designed for the implementation of
data-centric large-scale parallel applications. The DCEx programming paradigm
exploits private data structures and limits the amount of shared data among par-
allel threads in HPC applications. The key idea of DCEx is structuring programs
into data-parallel blocks mapped on computing elements and managed in parallel
by a large number of parallel tasks. Data-parallel blocks are the units of shared-
and distributed-memory parallel computations and communications in the
memory/storage hierarchy. Tasks execute close to data using near-data synchro-
nization according to the PGAS model. Two use cases implemented using DCEx
constructs are also outlined and performance measures on different parallel ma-
chine configurations are shown.

Keywords: Parallel programming, data-parallel applications, data-centric com-
putational science, HPDA.

1 Introduction

Computational science applications use advanced computing capabilities to model and
solve complex scientific problems. To reach this goal, appropriate technologies and
tools are needed. In particular, parallel computing systems and scalable data manage-
ment techniques are vital. Nowadays, data-intensive scientific computing systems are
widely used for many computational science applications in several domains. The ever
more complex nature of the underlying computing infrastructure necessary to run large-
scale use cases asks for data-oriented solutions that simplify the development, deploy-
ment, and scalable execution of complex computational tasks. Among these solutions,
the scientific workflow model is a leading approach for designing and executing data-
intensive applications in high-performance computing infrastructures [1].

When data-intensive applications are targeted, as occurs in high-performance data
analysis (HPDA), programming frameworks need to limit task synchronization, reduce
communication and remote memory access. Although traditional parallel programing
tools and libraries, such as MPI, OpenMP and HPF, are being adapted to manage large
datasets, we argue that the best approach is to develop parallel programming paradigms
specifically designed according to a data-driven style, especially for supporting for big

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

2 D. Talia

data analysis and machine learning on high-performance computing (HPC) systems [2].
According this approach, new languages such as X10, Legion, and Chapel, have been
defined by exploiting a data-centric parallel programming approach.

This paper introduces the main features and the programming mechanisms of the
Data-Centric programming model for Exascale systems (DCEx) [3] designed for the
implementation of data-centric parallel applications. DCEx include programming
mechanisms to improve the performance of data-intensive computations by reducing
accessing, exchanging, and processing of data through the computing nodes of a paral-
lel system. DCEx provides a workflow-based model where tasks are executed closed
to input data and computation is distributed where data was generated/stored to limit
data transfer overhead.

The DCEx functions are based upon data-aware operations specifically designed for
data-intensive applications supporting the scalable use of a massive number of pro-
cessing elements run in parallel for solving computational science applications. The
DCEx model is based on private data structures and associated constructs. The goal is
to exploit parallelism starting from data artifacts and limit the amount of shared data
among parallel threads.

Instead of starting from parallel operations, we argue that starting from distributing
data abstractions specifically defined to be operated in parallel is more appropriate in
today data-intensive computations. Therefore, the basic idea of DCEx is structuring
programs into data-parallel blocks (DPBs) that are the basic units of distributed-
memory parallelism, like Resilient Distributed Datasets (RDDs) in Apache Spark,
around which computation, communication, and scheduling are accomplished. Com-
putation tasks execute close to data, using near-data synchronization based on the par-
titioning of data on different processing elements where tasks run in parallel. Using the
data-parallel blocks, in DCEx, three main styles of parallelism are exploited: data par-
allelism, SPMD parallelism, and task parallelism. A prototype API based on the DCEx
model has been implemented and some experimental evaluations have been performed.

The remainder of this paper is structured as follows. Section 2 presents the main
features of the parallel data model used in DCEx. The parallel data block concept is
introduced, and data access and processing operations are illustrated together with the
associated types of parallelism. Section 3 briefly illustrate two real use cases developed
by means of the programming mechanisms of DCEx, showing performance results.
Finally, Section 4 concludes the paper.

2 A Data-Centric Parallel Model

Scientific and business applications are becoming more and more data intensive; there-
fore, data are increasingly playing a centrale role in complex applications. For this rea-
son, the function of data is considered fundamental in the DCEx programming model.
In fact, as mentioned in the introduction, the data-centric model used in DCEx is based
on the data-parallel block (DPB) concept, which defines data structures that are parti-
tioned and distributed on different computing nodes where they are handled in parallel.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

 Data-Centric Parallel Programming Abstractions for High Performance Computations 3

Data-parallel blocks are more general data-oriented mechanisms and provide a higher
abstraction level with respect to Spark RDDs.

2.1 Data-Parallel Blocks

Data blocks and their message queues are mapped onto tasks to be managed in parallel
and are placed in memory/storage units by the DCEx runtime. A DPB is manipulated
for managing a composite data element in the main memory of multiple computing
nodes. Decomposing a program in terms of block-parallelism, instead of process-par-
allelism, enables mapping blocks during the program execution among different pro-
cessors in a parallel computer and execute tasks where data partitions are. This is the
main idea that lets us integrate in- and out-of-core programming in the same model. In
particular, a DPB datapb can be composed of multiple partitions:

datapb = [part0][part1][part2]...[partn-1]
where each partition is assigned to a given computing node.

Notation datapb[i] refers to the i-th partition of DPB datapb. However, when a
DPB is simply referred by its name (e.g., datapb) in a computing node (e.g., the i-th
node), it is intended as a reference to the locally available partition (e.g., datapb[i]).

A DPB can be created using the data.get() operation, which loads into main
memory some existing data from secondary storage. This operation is specified as fol-
lows:

datapb = data.get(source, [format], [part|repl]) at [Cnode|Carea];
where the data source, its format, the optional partitioning or replication on a computing
node (Cnode) or, better, on a computing area (Carea) composed of a set of computing
nodes, are its parameters.

DCEX also includes the data.declare() operation, used to declare a DPB that will
be created at run time as a result of a task execution. A DPB can be also written from
main memory of processors/cores, where the block has been managed, to secondary
storage using the data.set() operation, which syntax is as follows:

data.set(datapb, dest, [format]);
In this case, all partitions are collected in parallel form the processor memories and
moved to compose the secondary storage object.

Using these three basic operations, partitions can be mapped on different processing
nodes where each task will work in parallel on a given partition. This approach allows
computing nodes to manage in parallel the data partitions at each core/node using a set
of operations or library APIs that hide the complexity of the underlying actions.

2.2 Parallel operations

The two main types of computing abstractions defined in DCEx to be coupled with
parallel data blocks are:

• computing nodes and computing areas that specify single processing elements
or regions of processors of a parallel machine where to store data and run tasks.

• tasks and task pools that embody the units of parallelism in the model.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

4 D. Talia

The corresponding DCEx constructs defined to refer to these abstractions are: Cnode
for a single computing node and Carea for a region including a set of computing ele-
ments. For instance, a Cnode can be declared as follows:

nod = Cnode([hardware annotation parameters]);
whereas an example of Carea composed of a two-dimensional array of 30x40 compu-
ting nodes can be defined as follows:

nar = Carea(30,40);
where 30 is the number of rows and 40 is the number of columns of the computing area.
A single element of this area can be referred as nar[8][10] and a sub-area can be also
defined like, for example, na2 = Carea(nar,6,6); which extracts a 6x6 matrix of
computing nodes from the Carea defined by the variable nar.
Concerning tasks management constructs, the programming model allows for express-
ing parallelism using two concepts: Task and Task pool. A task can be defined as fol-
lows:
t=Task(func,func_params) [at Cnode|Carea] [on failure ignore|retry];

to execute a function on a given computing node or on a node of a computing area. The
on failure is an optional directive for specifying an action (for instance, ignore or
retry with it) to be performed in case of task failure. Task pool abstraction is defined
to implement SPMD parallelism representing a set of tasks that execute the same func-
tion. The basic syntax for declaring a pool of tasks is as follows:

tp = Task_Pool([size]);
where tp identifies the task pool and size is an optional parameter specifying the num-
ber of tasks in the pool. This statement declares a task pool but does not spawn its
execution. Tasks in the pool can be activated explicitly using a for loop as in the fol-
lowing example:

N = 40;
nodes = Carea(N);
for (i=0; i<N; i++) {
 func_param_1 = x;
 tp[i] = Task(func_name, func_param_1) at nodes[i];
}

By exploiting the parallel abstractions of DPBs, tasks, and computing areas, DCEx

implements three main types of parallelism that can be combined to develop complex
parallel applications: Task parallelism, data parallelism, and SPMD parallelism.

Task parallelism is exploited when different tasks that compose an application run
in parallel. It is data driven since data dependencies are used to decide when tasks can
be spawn in parallel. As input data of a task are ready its code can be executed. Data
parallelism is achieved when the same code is executed in parallel on different data
blocks or on partitions of a data block. In SPMD parallelism, differently from data par-
allelism, tasks cooperate to exchange partial results during execution. In DCEx, these
three types of parallelism are combined with the features of the Partitioned Global Ad-
dress Space (PGAS) model [5] that supports the definition of several execution contexts
based on separate address spaces that compose a global address space. For any given
task, this allows for the exploitation of memory locality and affinity, providing pro-
grammers with a well-define way to distinguish between private and shared memory
blocks.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

 Data-Centric Parallel Programming Abstractions for High Performance Computations 5

To give a quick example of how locality can be exploited in DCEx using data par-
allel blocks and computing areas, we can define the computing area ca, which includes
8 computing nodes where two data parallel blocks (df1 and df2), storing data coming
from two files f1 and f2, can be mapped by splitting them in four partitions each (see
Figure 1).

3 Two Real-world Use Cases

Different real-world applications have been developed by using the DCEx abstractions
integrated with the GrPPI language [4], such as urban computing dynamics, parallel
neuroimaging, and deep learning for anomaly detection in electric vehicles [6]. The two
we discuss here have been developed to analyze diffusion-weighted magnetic reso-
nance imaging data and trajectory discovery from social data analysis.

Fig. 1. Two data-parallel blocks storing two files (f1 and f2) partioned on 8 computing
nodes.

Diffusion-weighted magnetic resonance imaging (DWI) aims to obtain unique met-

rics for the study of brain white matter microstructure and structural connectivity. DWI
data are four-dimensional images composed from tens to hundreds of three-dimensional
brain images. Each image acquisition is composed of the signal of around 1 million
volumetric pixels (voxels). This leads to DWI images ranging from hundreds to thou-
sands of MB for each patient. The DWI workflow has been implemented using the
DCEx abstractions to orchestrate the execution of different parallel processing steps
consisting of Python scripts [4]. The processing steps of the DCEx workflow included
processing commands from different state-of-the-art neuroimaging toolboxes.

The trajectory discovery application has been developed for extracting frequent pat-
terns from large volumes of geotagged data gathered from social media. The main steps
of the application are as follows: (a) parallel crawling, (b) parallel data filtering, (c)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

6 D. Talia

automatic keywords extraction and data grouping, (d) Regions of Interest (RoIs) ex-
traction through a parallel clustering algorithm, and (e) Trajectory mining. This final
step is based on a highly parallel versions of the FP-Growth (frequent itemset analysis)
and Prefix-Span (sequential pattern mining) algorithms.

3.1 Experimental evaluations

The experiments carried out to evaluate the DWI application have been performed
on an Intel-based cluster with Xeon processors with 128 GB of RAM memory each.
Data have been shared using NFS and GlusterFS filesystems with a 10 Gbps network.
Performance results are calculated by averaging five consecutive runs and are com-
pared with a baseline implementation based on the use of the Python package Nipype
[7], the SLURM cluster and multithreaded execution.

Table 1 summarizes the execution times using four different parallel configurations
ranging from 48 to 648 cores. The DCEx results are compared with those obtained with
the Nipype/Slurm implementation. The DCEx based solutions are significantly faster
than the one based on Nipype under Slurm.

Table 1. DCEx/ Nipype execution time (in minutes) using different parallel machine setting.

Cores Nypype/NFS Nypype/GlusterFS DCEx/NFS DCEx/GlusterFS
48 74.00 74.12 57.50 54.37

192 18.87 18.56 12.41 11.29

336 12.72 12.53 8.89 7.13

684 8.21 8.09 6.74 5.38

From this performance experiments, we also noted the effect of data locality in

DCEx under NFS and GlusterFS. Strong data caching at data nodes benefits the overall
execution time of a workflow execution of the same subject. In the best case, data lo-
cality results on 25% of improvement using 684 cores.

Concerning the trajectory discovery application, a set of experiments has been run
for evaluating turnaround time and speedup using different number of cores and differ-
ent sizes of datasets to be analyzed. Figure 2 shows the main results.

Figure 2(a) shows the turnaround times (in seconds) of the application for the three
datasets we considered (D1, D2, D4), using from 8 to 64 cores. For the smallest dataset
(D1) that contains 1.2GB of data, the turnaround time decreases from 4h 10m using 8
cores to 58 minutes using 64 cores. For D2 (2.4GB) the turnaround time decreases from
6h 21m to about 1h 5m minutes. For D4 (4.8GB) the turnaround time decreases from
9h 32m to 1h 20m.

Figure 2(b) reports the speedup obtained by analyzing the different datasets from 8
up to 64 CPU cores. For dataset D1 the speedup is close to linear up to 16 cores, while
it slightly decreases to 3.5 and 4.6 with 32 and 64 cores, respectively. For datasets D2
and D4, the application reached a better speedup, which is close to linear. It is worth to

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

 Data-Centric Parallel Programming Abstractions for High Performance Computations 7

note that the speedup increases as the size of the dataset increases. This means that CPU
cores are better used when larger datasets are analyzed.

Fig. 2. Turnaround time and speedup of the trajectory discovery application in DCEx.

4 Conclusions

Traditional parallel programming languages are not specifically designed for develop-
ing data-intensive applications in science and engineering. With the advent of Big Data,
machine learning, and generative artificial intelligence, new programming models, lan-
guages, and APIs are needed to combine parallel data abstractions with scalability and
performance for extreme data processing [8].

To streamline the development of computational science applications in HPC sys-
tems, large-scale data- and task-parallelism techniques have to be developed on top of
the data-parallel abstractions divided into many partitions mapped on different compu-
ting elements where local tasks process them. This approach allows for processing in
parallel the data partitions at each core/node using a set of statements/library calls that
hide the complexity of the underlying operations. Since data dependency in this sce-
nario may limit scalability, data-centric abstractions help programmers to avoid or limit
it to a local/neighbors scale. Scalability of large data analysis, machine learning and AI
applications are closely related to the management of parallelism in the data-driven
operations needed in the applications and the limitation of overhead created by data
processing mechanisms and techniques.

In this paper we illustrated DCEx, as a data-aware parallel programming paradigm
for data intensive computational science applications. The designed DCEx program-
ming model includes data-parallel blocks and data-driven parallel tasks for the imple-
mentation of scalable algorithms and applications on top of HPC computers, with a
special emphasis on the support of massive data analysis applications.

DCEx provides a workflow-based programming model that enables to set up a data-
oriented life cycle management, allowing parallel data locality and data affinity. More-
over, the DCEx implementation offers a runtime system that controls and optimizes the
execution of the component-based use-cases and applications. We described here the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

8 D. Talia

language features and reported on the experimental evaluation of two significant use
cases. Results show that DCEx achieves good performance and scalability.

Machine learning and generative AI are going to play a key role in computational
science applications as the analysis of scientific data is integrating traditional simula-
tion approaches. AI and machine learning algorithms are becoming powerful tools to
accelerate simulations, extract patterns from data, and enhance scientific discovery by
bridging data-driven methods with traditional modeling strategies. To support this new
trend, scalable parallel programming models and tools using a data-centric approach
for exploiting parallelism in data analysis are vital.

Acknowledgments. This study was partially funded by the EU ASPIDE project (grant number
801091) and the “National Centre for HPC, Big Data and Quantum Computing”, (grant number
CN00000013- CUP H23C22000360005). Author also acknowledges the contribution of col-
leagues who worked on the DCEx model in the framework of the ASPIDE project.

Disclosure of Interests. The author has no competing interests to declare that are relevant to the
content of this article.

References

1. Ejarque, J., et al.: Enabling dynamic and intelligent workflows for HPC, data analytics, and
AI convergence. Future generation computer systems 134, 414–429 (2022)

2. Talia, D., Trunfio, P., Marozzo, F., Belcastro, L., Cantini, R., Orsino, A.: Programming big
data applications: scalable tools and frameworks for your needs. World Scientific Press,
London (2024).

3. Garcia-Blas, J., et al: Convergence of HPC and Big Data in extreme-scale data analysis
through the DCEx programming model. In: IEEE 34th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD) 2022, IEEE, pp. 130-
139, Bordeaux (2022).

4. Garcia-Blas, J., del Rio, D., Garcia, J. D., Carretero, J.: Exploiting stream parallelism of
MRI reconstruction using GrPPI over multiple back-ends. In: Workshop on Clusters, Clouds
and Grids for Life Sciences, CCGRID-Life 2019, CCGRID 2019, IEEE, Larnaca, Cyprus
(2019).

5. Stitt, T.: An introduction to the partitioned global address space programming model.
CNX.org (2010).

6. Marchesi, A., et al: Paradigms and Models at Run-time - Final Report D2.6. ASPIDE Project
(2021).

7. Gorgolewski, K., Burns, C., Madison, C., Clark D., Halchenko, Y., Waskom, M., Ghosh, S.,
Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in
python. Frontiers in Neuroinformatics 5, pp. 13 (2011).

8. Talia D., A view of programming scalable data analysis: from clouds to exascale, Journal of
Cloud Computing 8, 4 (2019).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46

