
Data-Centric Parallel Programming Abstractions for 
High Performance Computations 

Domenico Talia[0000-0003-1910-9236]  

University of Calabria, Via P. Bucci 41C, Rende 87036, Italy 
domenico.talia@unical.it 

Abstract. This short paper describes the programming paradigm and the main 
constructs of the DCEx programming model designed for the implementation of 
data-centric large-scale parallel applications. The DCEx programming paradigm 
exploits private data structures and limits the amount of shared data among par-
allel threads in HPC applications. The key idea of DCEx is structuring programs 
into data-parallel blocks mapped on computing elements and managed in parallel 
by a large number of parallel tasks. Data-parallel blocks are the units of shared- 
and distributed-memory parallel computations and communications in the 
memory/storage hierarchy. Tasks execute close to data using near-data synchro-
nization according to the PGAS model. Two use cases implemented using DCEx 
constructs are also outlined and performance measures on different parallel ma-
chine configurations are shown. 

Keywords: Parallel programming, data-parallel applications, data-centric com-
putational science, HPDA. 

1 Introduction 

Computational science applications use advanced computing capabilities to model and 
solve complex scientific problems. To reach this goal, appropriate technologies and 
tools are needed. In particular, parallel computing systems and scalable data manage-
ment techniques are vital. Nowadays, data-intensive scientific computing systems are 
widely used for many computational science applications in several domains. The ever 
more complex nature of the underlying computing infrastructure necessary to run large-
scale use cases asks for data-oriented solutions that simplify the development, deploy-
ment, and scalable execution of complex computational tasks. Among these solutions, 
the scientific workflow model is a leading approach for designing and executing data-
intensive applications in high-performance computing infrastructures [1]. 

When data-intensive applications are targeted, as occurs in high-performance data 
analysis (HPDA), programming frameworks need to limit task synchronization, reduce 
communication and remote memory access. Although traditional parallel programing 
tools and libraries, such as MPI, OpenMP and HPF,  are being adapted to manage large 
datasets, we argue that the best approach is to develop parallel programming paradigms 
specifically designed according to a data-driven style, especially for supporting for big 
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data analysis and machine learning on high-performance computing (HPC) systems [2]. 
According this approach, new languages such as X10, Legion, and Chapel, have been 
defined by exploiting a data-centric parallel programming approach. 

This paper introduces the main features and the programming mechanisms of the 
Data-Centric programming model for Exascale systems (DCEx) [3] designed for the 
implementation of data-centric parallel applications. DCEx include programming 
mechanisms to improve the performance of data-intensive computations by reducing 
accessing, exchanging, and processing of data through the computing nodes of a paral-
lel system. DCEx provides a workflow-based model where tasks are executed closed 
to input data and computation is distributed where data was generated/stored to limit 
data transfer overhead. 

The DCEx functions are based upon data-aware operations specifically designed for 
data-intensive applications supporting the scalable use of a massive number of pro-
cessing elements run in parallel for solving computational science applications. The 
DCEx model is based on private data structures and associated constructs. The goal is 
to exploit parallelism starting from data artifacts and limit the amount of shared data 
among parallel threads. 

Instead of starting from parallel operations, we argue that starting from distributing 
data abstractions specifically defined to be operated in parallel is more appropriate in 
today data-intensive computations. Therefore, the basic idea of DCEx is structuring 
programs into data-parallel blocks (DPBs) that are the basic units of distributed-
memory parallelism, like Resilient Distributed Datasets (RDDs) in Apache Spark, 
around which computation, communication, and scheduling are accomplished. Com-
putation tasks execute close to data, using near-data synchronization based on the par-
titioning of data on different processing elements where tasks run in parallel. Using the 
data-parallel blocks, in DCEx, three main styles of parallelism are exploited: data par-
allelism, SPMD parallelism, and task parallelism. A prototype API based on the DCEx 
model has been implemented and some experimental evaluations have been performed. 

The remainder of this paper is structured as follows. Section 2 presents the main 
features of the parallel data model used in DCEx. The parallel data block concept is 
introduced, and data access and processing operations are illustrated together with the 
associated types of parallelism. Section 3 briefly illustrate two real use cases developed 
by means of the programming mechanisms of DCEx, showing performance results. 
Finally, Section 4 concludes the paper. 

 

2 A Data-Centric Parallel Model 

Scientific and business applications are becoming more and more data intensive; there-
fore, data are increasingly playing a centrale role in complex applications. For this rea-
son, the function of data is considered fundamental in the DCEx programming model. 
In fact, as mentioned in the introduction, the data-centric model used in DCEx is based 
on the data-parallel block (DPB) concept, which defines data structures that are parti-
tioned and distributed on different computing nodes where they are handled in parallel. 
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Data-parallel blocks are more general data-oriented mechanisms and provide a higher 
abstraction level with respect to Spark RDDs. 
 
2.1 Data-Parallel Blocks 

Data blocks and their message queues are mapped onto tasks to be managed in parallel 
and are placed in memory/storage units by the DCEx runtime. A DPB is manipulated 
for managing a composite data element in the main memory of multiple computing 
nodes. Decomposing a program in terms of block-parallelism, instead of process-par-
allelism, enables mapping blocks during the program execution among different pro-
cessors in a parallel computer and execute tasks where data partitions are. This is the 
main idea that lets us integrate in- and out-of-core programming in the same model. In 
particular, a DPB datapb can be composed of multiple partitions: 

datapb = [part0][part1][part2]...[partn-1] 
where each partition is assigned to a given computing node. 

Notation datapb[i] refers to the i-th partition of DPB datapb. However, when a 
DPB is simply referred by its name (e.g., datapb) in a computing node (e.g., the i-th 
node), it is intended as a reference to the locally available partition (e.g., datapb[i]). 

A DPB can be created using the data.get() operation, which loads into main 
memory some existing data from secondary storage. This operation is specified as fol-
lows: 

datapb = data.get(source, [format], [part|repl]) at [Cnode|Carea]; 
where the data source, its format, the optional partitioning or replication on a computing 
node (Cnode) or, better, on a computing area (Carea) composed of a set of computing 
nodes, are its parameters. 

DCEX also includes the data.declare() operation, used to declare a DPB that will 
be created at run time as a result of a task execution. A DPB can be also written from 
main memory of processors/cores, where the block has been managed, to secondary 
storage using the data.set() operation, which syntax is as follows: 

data.set(datapb, dest, [format]); 
In this case, all partitions are collected in parallel form the processor memories and 
moved to compose the secondary storage object. 

Using these three basic operations, partitions can be mapped on different processing 
nodes where each task will work in parallel on a given partition. This approach allows 
computing nodes to manage in parallel the data partitions at each core/node using a set 
of operations or library APIs that hide the complexity of the underlying actions.  

 
2.2 Parallel operations 

The two main types of computing abstractions defined in DCEx to be coupled with 
parallel data blocks are: 

• computing nodes and computing areas that specify single processing elements 
or regions of processors of a parallel machine where to store data and run tasks. 

• tasks and task pools that embody the units of parallelism in the model. 
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The corresponding DCEx constructs defined to refer to these abstractions are: Cnode 
for a single computing node and Carea for a region including a set of computing ele-
ments. For instance, a Cnode can be declared as follows: 

nod = Cnode([hardware annotation parameters]); 
whereas an example of Carea composed of a two-dimensional array of 30x40 compu-
ting nodes can be defined as follows: 

nar = Carea(30,40); 
where 30 is the number of rows and 40 is the number of columns of the computing area. 
A single element of this area can be referred as nar[8][10] and a sub-area can be also 
defined like, for example, na2 = Carea(nar,6,6); which extracts a 6x6 matrix of 
computing nodes from the Carea defined by the variable nar. 
Concerning tasks management constructs, the programming model allows for express-
ing parallelism using two concepts: Task and Task pool. A task can be defined as fol-
lows: 
t=Task(func,func_params) [at Cnode|Carea] [on failure ignore|retry]; 

to execute a function on a given computing node or on a node of a computing area. The 
on failure is an optional directive for specifying an action (for instance, ignore or 
retry with it) to be performed in case of task failure. Task pool abstraction is defined 
to implement SPMD parallelism representing a set of tasks that execute the same func-
tion. The basic syntax for declaring a pool of tasks is as follows: 

tp = Task_Pool([size]); 
where tp identifies the task pool and size is an optional parameter specifying the num-
ber of tasks in the pool. This statement declares a task pool but does not spawn its 
execution. Tasks in the pool can be activated explicitly using a for loop as in the fol-
lowing example: 
 

N = 40; 
nodes = Carea(N); 
for (i=0; i<N; i++) { 
    func_param_1 = x; 
    tp[i] = Task(func_name, func_param_1) at nodes[i]; 
} 

 
By exploiting the parallel abstractions of DPBs, tasks, and computing areas, DCEx 

implements three main types of parallelism that can be combined to develop complex 
parallel applications: Task parallelism, data parallelism, and SPMD parallelism. 

Task parallelism is exploited when different tasks that compose an application run 
in parallel. It is data driven since data dependencies are used to decide when tasks can 
be spawn in parallel. As input data of a task are ready its code can be executed. Data 
parallelism is achieved when the same code is executed in parallel on different data 
blocks or on partitions of a data block. In SPMD parallelism, differently from data par-
allelism, tasks cooperate to exchange partial results during execution. In DCEx, these 
three types of parallelism are combined with the features of the Partitioned Global Ad-
dress Space (PGAS) model [5] that supports the definition of several execution contexts 
based on separate address spaces that compose a global address space. For any given 
task, this allows for the exploitation of memory locality and affinity, providing pro-
grammers with a well-define way to distinguish between private and shared memory 
blocks. 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_46

https://dx.doi.org/10.1007/978-3-031-97635-3_46
https://dx.doi.org/10.1007/978-3-031-97635-3_46


 Data-Centric Parallel Programming Abstractions for High Performance Computations 5 

To give a quick example of how locality can be exploited in DCEx using data par-
allel blocks and computing areas, we can define the computing area ca, which includes 
8 computing nodes where two data parallel blocks (df1 and df2), storing data coming 
from two files f1 and f2,  can be mapped by splitting them in four partitions each (see 
Figure 1). 

3 Two Real-world Use Cases 

Different real-world applications have been developed by using the DCEx abstractions 
integrated with the GrPPI language [4], such as urban computing dynamics, parallel 
neuroimaging, and deep learning for anomaly detection in electric vehicles [6]. The two 
we discuss here have been developed to analyze diffusion-weighted magnetic reso-
nance imaging data and trajectory discovery from social data analysis. 

 

 
 

Fig. 1. Two data-parallel blocks storing two files (f1 and f2) partioned on 8 computing 
nodes. 

 
Diffusion-weighted magnetic resonance imaging (DWI) aims to obtain unique met-

rics for the study of brain white matter microstructure and structural connectivity. DWI 
data are four-dimensional images composed from tens to hundreds of three-dimensional 
brain images. Each image acquisition is composed of the signal of around 1 million 
volumetric pixels (voxels). This leads to DWI images ranging from hundreds to thou-
sands of MB for each patient. The DWI workflow has been implemented using the 
DCEx abstractions to orchestrate the execution of different parallel processing steps 
consisting of Python scripts [4]. The processing steps of the DCEx workflow included 
processing commands from different state-of-the-art neuroimaging toolboxes. 

The trajectory discovery application has been developed for extracting frequent pat-
terns from large volumes of geotagged data gathered from social media. The main steps 
of the application are as follows: (a) parallel crawling, (b) parallel data filtering, (c) 
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automatic keywords extraction and data grouping, (d) Regions of Interest (RoIs) ex-
traction through a parallel clustering algorithm, and (e) Trajectory mining. This final 
step is based on a highly parallel versions of the FP-Growth (frequent itemset analysis) 
and Prefix-Span (sequential pattern mining) algorithms. 

3.1 Experimental evaluations 

The experiments carried out to evaluate the DWI application have been performed 
on an Intel-based cluster with Xeon processors with 128 GB of RAM memory each. 
Data have been shared using NFS and GlusterFS filesystems with a 10 Gbps network. 
Performance results are calculated by averaging five consecutive runs and are com-
pared with a baseline implementation based on the use of the Python package Nipype 
[7], the SLURM cluster and multithreaded execution. 

Table 1 summarizes the execution times using four different parallel configurations 
ranging from 48 to 648 cores. The DCEx results are compared with those obtained with 
the Nipype/Slurm implementation. The DCEx based solutions are significantly faster 
than the one based on Nipype under Slurm.  

Table 1. DCEx/ Nipype execution time (in minutes) using different parallel machine setting. 

Cores Nypype/NFS Nypype/GlusterFS DCEx/NFS DCEx/GlusterFS 
48   74.00   74.12   57.50   54.37 

192   18.87   18.56   12.41   11.29 

336   12.72   12.53     8.89     7.13 

684     8.21     8.09     6.74     5.38 

 
From this performance experiments, we also noted the effect of data locality in 

DCEx under NFS and GlusterFS. Strong data caching at data nodes benefits the overall 
execution time of a workflow execution of the same subject. In the best case, data lo-
cality results on 25% of improvement using 684 cores. 

Concerning the trajectory discovery application, a set of experiments has been run 
for evaluating turnaround time and speedup using different number of cores and differ-
ent sizes of datasets to be analyzed. Figure 2 shows the main results. 

Figure 2(a) shows the turnaround times (in seconds) of the application for the three 
datasets we considered (D1, D2, D4), using from 8 to 64 cores. For the smallest dataset 
(D1) that contains 1.2GB of data, the turnaround time decreases from 4h 10m using 8 
cores to 58 minutes using 64 cores. For D2 (2.4GB) the turnaround time decreases from 
6h 21m to about 1h 5m minutes. For D4 (4.8GB) the turnaround time decreases from 
9h 32m to 1h 20m. 

Figure 2(b) reports the speedup obtained by analyzing the different datasets from 8 
up to 64 CPU cores. For dataset D1 the speedup is close to linear up to 16 cores, while 
it slightly decreases to 3.5 and 4.6 with 32 and 64 cores, respectively. For datasets D2 
and D4, the application reached a better speedup, which is close to linear. It is worth to 
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note that the speedup increases as the size of the dataset increases. This means that CPU 
cores are better used when larger datasets are analyzed. 

 

 
Fig. 2. Turnaround time and speedup of the trajectory discovery application in DCEx. 

4 Conclusions 

Traditional parallel programming languages are not specifically designed for develop-
ing data-intensive applications in science and engineering. With the advent of Big Data,  
machine learning, and generative artificial intelligence, new programming models, lan-
guages, and APIs are needed to combine parallel data abstractions with scalability and 
performance for extreme data processing [8]. 

To streamline the development of computational science applications in HPC sys-
tems, large-scale data- and task-parallelism techniques have to be developed on top of 
the data-parallel abstractions divided into many partitions mapped on different compu-
ting elements where local tasks process them. This approach allows for processing in 
parallel the data partitions at each core/node using a set of statements/library calls that 
hide the complexity of the underlying operations. Since data dependency in this sce-
nario may limit scalability, data-centric abstractions help programmers to avoid or limit 
it to a local/neighbors scale. Scalability of large data analysis, machine learning and AI 
applications are closely related to the management of parallelism in the data-driven 
operations needed in the applications and the limitation of overhead created by data 
processing mechanisms and techniques. 

In this paper we illustrated DCEx, as a data-aware parallel programming paradigm 
for data intensive computational science applications. The designed DCEx program-
ming model includes data-parallel blocks and data-driven parallel tasks for the imple-
mentation of scalable algorithms and applications on top of HPC computers, with a 
special emphasis on the support of massive data analysis applications. 

DCEx provides a workflow-based programming model that enables to set up a data-
oriented life cycle management, allowing parallel data locality and data affinity. More-
over, the DCEx implementation offers a runtime system that controls and optimizes the 
execution of the component-based use-cases and applications. We described here the 
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language features and reported on the experimental evaluation of two significant use 
cases. Results show that DCEx achieves good performance and scalability. 

Machine learning and generative AI are going to play a key role in computational 
science applications as the analysis of scientific data is integrating traditional simula-
tion approaches. AI and machine learning algorithms are becoming powerful tools to 
accelerate simulations, extract patterns from data, and enhance scientific discovery by 
bridging data-driven methods with traditional modeling strategies. To support this new 
trend, scalable parallel programming models and tools using a data-centric approach 
for exploiting parallelism in data analysis are vital. 
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