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Abstract. Graph-based machine learning models have gained significant 
attention in predicting the emergence of new relationships in evolving 
networks. In this work, we present a study on forecasting scientific 
collaborations using a Graph Attention Network (GAT) with L2 regularization 
and dropout. We construct yearly co-authorship graphs based on historical 
publication data and analyze the evolution of these graphs over time with the 
International Conference on Computational Science (ICCS) as an example of a 
living scientific community. Our approach involves training on past yearly 
graphs to predict the formation of new edges in future graphs. We assess the 
model's performance by varying the prediction window and evaluating results 
using link prediction metrics. The proposed method demonstrates the feasibility 
of utilizing deep learning techniques for predicting future collaborations based 
on past scientific interactions. 
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1 Introduction 

Scientific collaboration drives innovation, and co-authorship networks reveal how 
ideas spread [1,2]. Predicting future researcher collaborations, such as grants and lab 
space, is key for optimizing resource allocation. Traditional link-prediction methods 
(e.g., common neighbors, Jaccard similarity) use static features and ignore changes in 
research interests and trends [3]. Most graph neural network methods also fail to 
capture temporal dynamics, which is essential for predicting new collaborations [4]. 
Graph Attention Networks (GATs) overcome this by dynamically weighing evolving 
neighbor influences [5]. In this study, we build temporal co-authorship graphs from 
the International Conference on Computational Science (ICCS)1 publications since 
2001 and use GAT-based link prediction with varying forecast windows. Our results 
show how temporal attention mechanisms enhance prediction accuracy and provide 
actionable insights for strategic academic planning. 

1 https://www.iccs-meeting.org/  
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2 Modelling collaboration in scientific events 

We model collaboration as a link prediction task in a co-authorship network. While 
focused on ICCS, the approach generalizes to other scientific domains. Here we 
consider the following definition of emergent scientific collaboration. Two 
researchers are labeled as target emergent collaboration pair appeared after an event in 
year Y if they: (1) don’t have any publications in common prior to this event in any 
source (no co-authorship recorded during the years before the event (y≤Y)); (2) come 
to the event presenting own research (publication in the event proceeding); (3) publish 
together in any source after the year (co-authorship recorded in y>Y). 

 

Fig. 1. General pipeline of the collaboration prediction process: (1) data acquisition from ICCS 
+ OpenAlex, (2) yearly co-authorship graph construction, (3) emergent collaboration labeling, 
(4) GAT-based link prediction, and (5) evaluation. 

The definition used in this study may be biased, as it does not account for other 
forms of collaboration, such as meetings or situations where researchers plan 
collaborations without publishing together (e.g., sharing affiliations). Additionally, 
presenting at an event under a single author's name may also obscure collaborations. 
However, the initial experiment assumes the primary collaboration trends are captured 
by this definition. 

Our approach uses two main data sources (see Fig. 1). First, we utilize the ICCS 
publication corpus, which is structured and vectorized through topic modeling and 
manuscript vectorization based on topic relevance [7]. Second, we supplement this 
with metadata from OpenAlex2, which provides structured information about authors 
and their works. We also extend topic analysis using OpenAlex topics. By using these 
data sources, we reconstruct a yearly co-authorship graph from ICCS history, forming 
a dynamic graph for link prediction. Both data sources provide features for the 

2 https://openalex.org/  

 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_45

https://openalex.org/
https://dx.doi.org/10.1007/978-3-031-97635-3_45
https://dx.doi.org/10.1007/978-3-031-97635-3_45


​ Predicting scientific collaboration​ 3 

GNN-based model. Detailed implementation steps are provided in the following 
subsections. 

The construction of co-authorship graphs is a crucial step in modeling scientific 
collaborations. This process involves extracting data from publication metadata and 
representing it as a graph, where nodes are authors and edges represent co-authored 
publications. Authorship data is extracted from the dataset, and co-authorship graphs 
are constructed yearly using NetworkX,3 where nodes are authors and edges are 
shared publications. 

The Gall graph represents a network of scientific collaborations across all years, 
where each node corresponds to an author, and edges between nodes denote 
co-authored publications. Multiple edges between the same nodes reflect repeated 
collaborations over different years. This graph serves as the foundation for tasks such 
as link prediction, temporal analysis, and network evolution modeling. 

To analyze the evolution of scientific collaborations, yearly co-authorship graphs 
are constructed, allowing us to study how co-authorship patterns change over time 
and serving as the basis for link prediction experiments. The starting point for 
creating temporal graphs is the full co-authorship graph Gall, which includes all 
collaborations from all years. For each year, from 2023 to 2001, we construct 
cumulative graphs by excluding all publications after year Y. Each graph GY (for Y 
from 2001 to 2023) represents the cumulative collaboration network at the end of year 
Y. These graphs allow us to analyze the growth, stability, and evolution of the 
co-authorship network, including the emergence of new research clusters and future 
collaboration predictions based on past trends. These temporal graphs serve as the 
foundation for evaluating link prediction models, assessing how well historical data 
can forecast new scientific partnerships. 

To train a machine learning model for link prediction, we need to create a dataset 
of positive and negative examples. Positive examples are new edges that appear in the 
co-authorship network from year Y to Y+1. For each yearly graph GY, we compare it 
with GY+1 to identify new edges. Each tuple (author1, author2, year) in positive 
examples represents a new collaboration. 

Negative examples represent potential collaborations that didn’t happen but could 
have. We sample pairs of authors who haven’t collaborated yet but are in close 
network proximity. The dataset is balanced to ensure an equal number of positive and 
negative examples. These datasets will train and evaluate the graph-based neural 
network model (GAT) for predicting future collaborations. 

The GAT model architecture captures structural and relational patterns within the 
co-authorship network. The input graph G = (V, E) consists of nodes (authors) and 
edges (co-authorship relationships). The model uses an attention mechanism to assign 
varying importance to neighboring nodes, enhancing the representation of author 
interactions. 

For link prediction, node embeddings are processed through multiple GAT layers 
to capture high-order dependencies. The final step involves combining node 
embeddings for a given author pair (e.g., through concatenation, element-wise 
multiplication, or absolute difference), followed by a fully connected layer with a 
sigmoid activation to generate a probability score for a future collaboration. 

3 https://networkx.org/  
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The training uses a binary cross-entropy loss function, comparing predicted 
probabilities with actual labels (positive for new collaborations, negative for 
non-existent links). Dropout and L2 regularization are applied to prevent overfitting 
and improve generalization. Dropout is applied to both the attention coefficients and 
the hidden node representations, ensuring the model does not overly depend on 
specific nodes or features. Through experimentation, we found that a dropout rate of 
0.3 and a weight decay of 5e-4 effectively balance overfitting and model capacity, 
contributing to stable and robust training. 

The attention mechanism in GAT enables the model to assign different importance 
scores to neighboring nodes during message passing. In co-authorship networks, 
recurring co-authors with shared topics offer a more predictive signal. By learning 
attention weights, the model amplifies informative connections and suppresses noisy 
ones, improving link prediction performance. 

We use binary cross-entropy loss and evaluate performance with ROC-AUC and 
F1-score. Fig. 2 shows the dynamics of the selected metrics during the model training. 
All three curves in Fig. 2 show rapid improvement during the first 20 epochs, after 
which the loss stabilizes and both ROC-AUC and F1-score plateau. This indicates that 
the model converges early and maintains stable generalization throughout training, 
with no evidence of overfitting. The model achieves a stable ROC-AUC of ~0.86 and 
F1-score of ~0.78, indicating a reliable balance between precision and recall. These 
results suggest that the GAT effectively captures both thematic similarity and 
structural proximity in co-authorship graphs. The training loss steadily converges 
without overfitting, validating the regularization strategy. By leveraging these loss and 
evaluation metrics, we ensure that the model learns meaningful representations and 
generalizes well to unseen author pairs, effectively predicting future scientific 
collaborations. 

​

 
Fig. 2. Loss value (left), ROC-AUC (center), and F1 score (right) during model training. 
 

Abstracts from ICCS proceedings are processed by cleaning, converting to 
TF-IDF vectors, and reducing them to 128-dimensional semantic embeddings using 
SVD. Simultaneously, topic identifiers for each paper are retrieved from OpenAlex, 
and a frequency count of each topic across an author’s publications is compiled. The 
low-dimensional abstract embedding is then combined with this topic-frequency 
profile to form a rich feature vector for each author. 

Co-authorships are represented as a weighted graph, where authors are nodes, and 
edges reflect the frequency and recency of collaborations. To predict new 
collaborations, a two-layer Graph Attention Network (GAT) is employed. In the first 
layer, each author’s feature vector is projected into an intermediate representation and 
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combined with those of neighboring authors through parallel attention mechanisms. 
This enables the model to focus on relevant collaborators by assigning higher weights 
to similar neighbors. After applying a nonlinear activation function and dropout for 
regularization, the enriched information flows into a second attention layer, 
generating a final 32-dimensional embedding for each author. 

For link prediction, the embeddings of two authors are fed into a small multilayer 
perceptron, which outputs the likelihood of future collaboration. The model is trained 
on known emerging collaborations versus random author pairs, optimized using 
binary cross-entropy loss. This end-to-end pipeline—combining TF-IDF reduction, 
topic counting, graph attention, and a lightweight classifier—provides a clear 
framework for understanding how shared thematic interests drive scientific 
collaboration. 

3 Prediction of collaboration in computational science community 

We retrieved metadata for all ICCS proceedings via OpenAlex and collected 16178 
authors and 321848 papers. We identified 3623 “emerging” collaborations by finding 
author pairs who first met at ICCS (i.e., had no prior joint publications) and later 
co‑authored any paper. The co-authorship network contains a core of 1,687 authors 
(65.6%) and multiple smaller clusters. The top 30 contributors show distinct 
collaboration patterns over time. Fig. 3 visualizes this by plotting, for each year, the 
count of new co‑author links each author brought into the network, with larger 
bubbles indicating more partnerships. Most core contributors join ICCS, spark fresh 
collaborations, and then sustain a steady rate with gradual tapering in new ties, while 
a few exhibit intermittent yet significant bursts of activity. Beyond this core lies a 
multitude of smaller components – 186 isolated author pairs and 109 clusters of 3-16 
authors – representing collaborations that emerged largely independently of the main 
ICCS hub. 

 
Fig. 3. Top contributors to the collaborating process. 
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Fig. 4. Co-authorship graph: key authors and significant connections. 
 

Topic similarity correlates with collaboration frequency: dense clusters form 
around Machine Learning and Data Science, while niche topics form smaller, isolated 
components. 

A key aspect of our study is the effect of varying the time window parameter on 
predicting future scientific collaborations. The time window defines how much 
historical data is used when constructing the training graph. We experiment with 
different values of N, the number of years of past data included, before predicting the 
next year’s collaborations. 

By varying N, we can assess how historical data impacts prediction accuracy, such 
as whether a longer collaboration history improves performance or adds noise. This 
analysis also explores whether recent collaborations are more predictive than older 
ones, highlighting temporal dynamics in co-authorship patterns. The optimal time 
window strikes a balance between using enough historical data and avoiding outdated 
collaborations (see Fig. 5). A shorter N may capture recent trends more sharply, while 
a longer N captures long-term relationships at the cost of outdated interactions. We 
compare the performance of multiple training graphs using different values of N. 
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Fig. 5. Model predictive performance depending on the time window. 

Evaluating the predictive performance of a model is crucial for ensuring its 
reliability in forecasting future collaborations. In this study, we assess the GAT-based 
model by comparing predicted links with actual collaborations that emerge in 
subsequent years. A robust evaluation framework is used to validate the model’s 
ability to identify meaningful connections and distinguish between likely and unlikely 
co-authorships. 

To measure performance, multiple key evaluation metrics are employed. By 
considering domain-specific variations, the analysis offers insights into the model’s 
strengths and areas for improvement, guiding refinements in model architecture, 
feature selection, and data preprocessing to enhance predictive accuracy across 
scientific networks. 

The choice of the N-year time window is vital for predicting future collaborations. 
We conducted experiments with varying N values, from short-term (1–3 years) to 
long-term (over 10 years) data, and trained models on these windows. Based on AUC 
results, we identified 5–7 years as optimal for balancing recency and historical depth. 

The results show distinct trends depending on the time window. Performance 
drops for very long histories (N>10), even with controlled regularization. This decline 
is primarily due to noise from outdated collaborations, not overfitting, as no 
instability or divergent training loss was observed. 

Using a short-term history (1–3 years) captures recent trends but overlooks 
long-term relationships, yielding higher precision but lower recall. A medium-term 
history (4–7 years) strikes a balance, incorporating both recent and long-term patterns, 
and provides the best performance across evaluation metrics. A long-term history 
(>10 years) includes outdated collaborations, reducing precision as older ties become 
less relevant. 
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Fig. 5 illustrates the trade-off: short windows focus predictions narrowly, while 
excessive history dilutes the signal with irrelevant past interactions. An optimal time 
window of 5-7 years offers the best balance between recency and depth. These 
findings suggest that recent collaborations play a dominant role in predicting future 
co-authorship, while very old collaborations contribute less to accuracy. 

4 Conclusions 

Compared to classic heuristics, the attention mechanism in GAT more effectively 
captures higher-order patterns in scientific collaboration. Key limitations of the 
current approach include incomplete publication records and the reliance on a fixed 
historical window. Our experiments show that a 5-7-year time window provides the 
best overall performance; however, the optimal span is likely to vary across different 
fields. Further enhancements could consider integrating author-level features (e.g., 
citation metrics, transformer-based abstract embeddings), employing adaptive 
time-window selection, and expanding the dataset by incorporating external sources 
such as Google Scholar, ORCID, ArXiv, or citation networks. These improvements 
would help reduce data sparsity and enhance coverage, leading to better prediction 
accuracy and generalization. 
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