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Abstract. Hidden Markov Models (HMMs), along with their extension,
Hidden Semi-Markov Models (HSMMs), are powerful tools for modeling
complex systems with multivariate states, but scaling them to ultra-large
state spaces presents significant computational and memory challenges.
This paper proposes a hybrid CUDA-based implementation to overcome
these limitations, enabling efficient processing of HMMs with massive
state spaces and extended observation sequences. Key optimizations in-
clude log-space computations for numerical stability, memory-efficient
data partitioning with sparse matrix representations, and asynchronous
data transfers using CUDA streams to overlap host-device communica-
tion with GPU kernel execution. Our approach achieves significant per-
formance improvements, demonstrating up to 8.5× speedup over multi-
threaded CPU implementations for HMM processing.

Keywords: Complex Systems with Large State Spaces · Hidden Markov
Models · GPU Acceleration · Performance Optimization · Memory Coa-
lescing · Asynchronous CUDA Streams.

1 Introduction

Hidden Markov Models (HMMs), introduced by Baum and Petrie [1], and their
extension, Hidden Semi-Markov Models (HSMMs), are powerful tools for model-
ing complex systems with multivariate states and hidden structures [5]. Despite
their effectiveness, traditional algorithms like Baum-Welch and Viterbi struggle
with computational and memory demands in large-scale scenarios. HMMs, de-
fined as doubly stochastic processes with hidden states inferred from observable
sequences, are widely applied in fields such as speech recognition [10], bioinfor-
matics [8], and finance [9].

An HMM is characterized by five key components:

– A set of N hidden states S = {S1, S2, . . . , SN} represents the underlying
stochastic process, where each state is not directly observable. The state at
time t is denoted by the variable qt, where qt ∈ S.

– A set of M observable symbols V = {v1, v2, . . . , vM}.
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– A state transition probability matrix A ∈ RN×N with elements aij , where
aij = P (qt+1 = Sj |qt = Si) represents the probability of transitioning from
state Si at time t to state Sj at time t+ 1.

– An emission probability matrix B ∈ RN×M with elements bj(m), where
bj(m) = P (Ot = vm|qt = Sj) represents the probability of observing symbol
vm at time t given that the hidden state is Sj .

– An initial state probability vector π ∈ RN , where πi = P (q1 = Si) represents
the probability of starting in state Si.

These components, collectively denoted as λ = (A,B,π), enable HMMs to
address three fundamental problems [7, 4]:

– Evaluation: To estimate the likelihood of an observed sequence O = (O1 . . . OT )
given the model λ, denoted as P (O|λ).

– Decoding : To determine the most probable sequence of hidden states Q =
(q1, q2, . . . , qT ) that generated the observed sequence O, i.e., maximizing
P (Q|O, λ).

– Learning : To estimate the model parameters, λ, to maximize the likelihood
of a training set of observation sequences.

This paper introduces a hybrid CPU-GPU out-of-core algorithm designed to
efficiently process HMMs with massive state spaces and longer observation se-
quences. Our approach integrates several optimization techniques that leverages
the parallel processing capabilities of modern GPUs while overcoming memory
constraints through innovative optimizations. First, we employ log-space com-
putations to mitigate numerical underflow, ensuring stable and accurate results
during algorithm execution in the GPU space. Second, we implement a memory-
efficient data partitioning strategy that utilizes sparse matrix representations to
optimize memory utilization of device. Large matrices are partitioned into blocks,
with dimensions dynamically determined by the available GPU memory which
enable efficient processing of large-scale HMMs. These blocks are processed se-
quentially on the GPU to enhance computational throughput. We also leverage
asynchronous data transfers via CUDA streams and a triple-buffered pipeline
to overlap data transfers between the host and device with kernel execution on
GPU to hide the data-transfer latencies. We further optimize memory access
patterns through memory coalescing technique for both dense and sparse matrix
computations.

The remainder of this paper is organized as follows: Section 2 provides an
overview of key background concepts, including the fundamentals of Hidden
Markov Models, the Baum-Welch algorithm, and the challenges associated with
scaling HMMs for large state spaces. Section 3 presents our proposed hybrid
CPU-GPU out-of-core algorithm, detailing the optimizations implemented for
efficient GPU utilization. Section 4 describes the experimental setup and perfor-
mance evaluation methodology used to assess the effectiveness of our GPU im-
plementation compared to CPU-based approaches. Finally, Section 5 concludes
the paper with a discussion of the findings and outlines directions for future
research in optimizing HMMs on GPU architectures.
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2 Background

Baum-Welch Algorithm is an Expectation-Maximization (EM) technique used
for parameter estimation in HMMs. It is an iterative algorithm designed to
optimize such parameters when the hidden states are unknown, based only on
observed data. The key essential part for this algorithm parameter lies in the
forward-backward procedure [2].

The Forward-Backward Procedure. A central problem in HMMs is effi-
ciently computing the probability of an observed sequence O = (O1, O2, . . . , OT )
given the model parameters λ. A naive approach of enumerating all possible state
sequences of length T has a computational complexity of O(TNT ), where N is
the number of hidden states and T is the number of observations [3, 6]. This ex-
ponential complexity renders the direct computation intractable even for moder-
ately sized sequences and models. The forward-backward procedure [1] provides a
computationally efficient solution by leveraging dynamic programming. The for-
ward pass computes the forward probabilities αt(j) = P (O1, . . . , Ot, qt = Sj |λ),
representing the probability of observing the sequence up to time t and be-
ing in state Sj at that time. The recursion step calculates αt(j) by summing
over all previous states Si≤j−1, weighted by the transition probabilities Aij

and the emission probability of the current observation Ot in state Sj . The
algorithm’s time complexity is O(TN2), significantly more efficient than a di-
rect computation. The backward pass computes the probability of the remain-
ing observation sequence (Ot+1 . . . OT ) given state Sj at time t, denoted by
βt(j) = P (Ot+1, Ot+2, . . . , OT | qt = Sj , λ). The recursion step calculates βt(j)
by summing over all possible next states Sk, weighted by the transition probabil-
ity Ajk, emission probability Bk(Ot+1), and the subsequent backward probability
βt+1(k). The algorithm has a time complexity of O(TN2).

Parameter Estimation with Baum-Welch. The Baum-Welch algorithm act
as an unsupervised learning technique that iteratively trains HMM parameters
using the forward-backward procedure to find the parameters of the HMM, i.e.,
λ, that maximize the probability of a given observation sequence. The algorithm
comprises two main steps:

1. E-Step (Expectation Step): Compute the expected number of state
transitions and emissions using forward and backward probabilities for all time
steps t and states Sj . We define the variable ξt(i, j) as the probability of being
in state Si at time t and in state Sj at time t+1 given the observation sequence
and the model, i.e., P (O | λ). So, the expected number of transitions from Si to
Sj can be calculated as:

ξt(i, j) =
αt(i)AijBj(Ot+1)βt+1(j)∑N

j=1 αt(j)βt(j)
. (1)
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2. M-Step (Maximization Step): Re-estimate the model parameters based
on the E-step’s expected values:

Aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, Bj(k) =

∑T
t=1 γt(j) · I(Ot = k)∑T

t=1 γt(j)
, (2)

where I(Ot = k) is an indicator function (1 if Ot = k, 0 otherwise), and γt(j)
is the posterior probabilities that estimate the likelihood of being in state Sj

at time t given the entire observation sequence and the HMM model. It can
be computed using γt(j) =

αt(j)βt(j)
P (O|λ) . Summing γt(j) over t gives the expected

number of transitions made from state Sj . The algorithm iterates these steps
until convergence (e.g., no significant change in the log-likelihood or a maximum
number of iterations is met).

3 Our Approach

We explored the potential of GPU acceleration to enhance the performance of
Hidden Markov Models with large state spaces by implementing the Baum-Welch
algorithm using the CUDA cuBLAS library. This implementation was specifically
designed to leverage the massive parallelism of modern GPUs, enabling highly
efficient matrix operations, which are central to HMM computations.

However GPU acceleration is fundamentally limited by the finite capacity
of GPU memory. This limitation becomes particularly challenging when pro-
cessing Hidden Markov Models with ultra-large state spaces or extended obser-
vation sequences, where the required data structures, such as the forward and
backward probability matrices, exceeds the available GPU memory. To overcome
these memory constraints and enable scalable processing of large-scale HMMs on
GPUs, we propose a hybrid CUDA implementation incorporating the following
key techniques:

– Log-Space Implementation for Numerical Stability : Mitigates numerical un-
derflow issues by performing computations in the log domain, ensuring stable
results.

– Memory-Efficient Data Partitioning and Sparse Representations: Optimizes
memory utilization by partitioning large data structures into smaller blocks
and leveraging sparse matrix representations and memory coalescing where
applicable.

– Asynchronous Data Transfer for Computation-Communication Overlap: Max-
imizes GPU utilization by overlapping data transfers between the host and
device memories with kernel execution to minimize the idle time.

These strategies address both the memory capacity limitations of GPUs that
enables efficient computation of HMMs with large state spaces and long obser-
vation sequences. The following sections detail these techniques.
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Dynamic Memory Allocation and Data Partitioning

The algorithm begins by analyzing the HMM parameters: the number of states,
transition probabilities, and the length of the observation sequence. Based on
these parameters, the memory required for the key data structures, i.e., tran-
sition matrix, emission matrix, and forward (α) and backward (β) probability
matrices, is dynamically calculated. If the total memory required to store these
matrices exceeds the available GPU memory, a data partitioning strategy is
employed. The matrices are divided into logical blocks, which are then pro-
cessed sequentially on the GPU. The dimensions of these blocks are determined
based on the available GPU memory and the dimensions of the original matrices.
Specifically:

– The transition matrix A is partitioned into blocks of size bA × bA.
– The emission matrix B is partitioned into blocks of size bB ×M .
– The forward and backward matrices α and β are each partitioned into blocks

of size N × bT .

The block sizes bA, bB , and bT are chosen to ensure that the combined mem-
ory size of active sparse matrix blocks residing in GPU memory remains lower
than the available GPU memory capacity. These blocks are also transferred
asynchronously between the host memory and the device memory using CUDA
streams. The asynchronous transfer mechanism overlaps data transfers with com-
putation to ensure minimizing idle GPU time while maximizing the utilization
of GPU core cycles.

Sparse Matrix Representations

In many real-world scenarios, HMMs have sparse transition and emission ma-
trices with numerous near-zero elements. To exploit this sparsity, we use Com-
pressed Sparse Row (CSR) or Compressed Sparse Column (CSC) formats de-
pending on the computation. These formats minimize data transfer overhead
and optimize GPU memory usage by excluding redundant near-zero values, en-
abling more efficient processing and avoiding unnecessary computations. For a
sparse matrix X ∈ RN×M , the CSR representation of X is defined by three
arrays:

– Values: An array containing all non-zero elements of X.
– Column Indices: An array storing the column index of each corresponding

non-zero value.
– Row Pointers: An array of size N+1, where the i-th element specifies the in-

dex in the Values array where the i-th row begins. The last element indicates
the end of the data in the Values array.

To enable efficient sparse matrix computations, we utilize the optimized
sparse matrix-vector multiplication (SpMV) routines from the CUDA cuSPARSE
library. These routines are highly optimized for parallelism, ensuring efficient
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access to the CSR/C data structure, minimizing warp divergence by aligning
threads with non-zero elements, and maximizing memory coalescing for access-
ing the Values and Column Indices arrays.

Memory coalescing is another GPU optimization technique that maximizes
GPU memory bandwidth utilization by ensuring that threads within a warp ac-
cess contiguous memory locations. This contiguous access pattern minimizes the
number of separate memory transactions required to fetch data for the warp.
Instead of multiple scattered accesses, coalescing combines them into a single
transaction that can leverage the GPU’s memory bus width. This reduction in
number of transactions directly translates to improved performance for memory-
bound applications. In our implementation, we leverage memory coalescing to
optimize access patterns for both dense and sparse matrix representations. For
dense matrices, we structure the data layout to ensure that threads within a
warp access consecutive elements within a row or column, depending on the
matrix’s layout. For example, if the computation processes rows, threads in a
warp access elements as matrix[row][thread_id + warp_base_index], where
warp_base_index is aligned to a multiple of the warp size. This alignment guar-
antees that all the data needed for an entire warp is fetched in a single memory
transaction to minimize memory access overhead. For sparse matrix representa-
tions, we structure the layout of the Values and Indices arrays so that threads
within a warp process consecutive non-zero elements in a row (or column) and
their corresponding column (or row) indices in a contiguous manner.

Asynchronous Data Transfers and Kernel Execution

One of the key bottlenecks in GPU-based computation is the data transfer be-
tween the host and device memory. To address this issue, we implement asyn-
chronous data transfers using CUDA streams that enable concurrent data move-
ment and kernel execution for increased computational throughput. This tech-
nique facilitates computation-communication overlap which effectively reduces
GPU idle time. This optimization is particularly important for dense and sparse
matrix-vector multiplication operations that form the core of HMM forward,
backward, and Baum-Welch training algorithms.

Our asynchronous execution strategy is implemented using a triple-buffered
pipelined approach managed by CUDA streams. The pipeline allows us to overlap
data transfers with computation to hide the latency of data transfers behind
computation. The process is detailed below:

– Memory Pinning : Host memory buffers are allocated using cudaHostAlloc()
with the cudaHostAllocDefault flag. This ensures the allocated memory is
pinned which allows the GPU to directly access the data via Direct Memory
Access during transfers.

– Stream Creation: Three distinct CUDA streams are created. These streams
operate independently and concurrently which enable the pipelined execu-
tion.

– Triple-Buffered Pipelined Execution: A three-stage pipeline is implemented
using the three streams.
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• Data Transfer to Device (Stream 0): cudaMemcpyAsync() is used within
stream 0 to transfer a data block from the pinned host memory to the
GPU’s global memory. This transfer is non-blocking which allows subse-
quent operations to begin immediately. The transfer size is determined
by the size of the data required for the target HMM computation step.

• Kernel Execution (Stream 1): While the data transfer in stream 0 is in
progress, stream 1 can start execution of the computational kernel on a
previously transferred data block residing in GPU memory.

• Result Transfer to Host (Stream 2): Concurrently with the kernel execu-
tion in stream 1 and the data transfer in stream 0, stream 2 transfers the
computed results from GPU global memory back to a separate pinned
host memory buffer using asynchronous transfer primitives.

4 Experimental Results

This section evaluates the performance of our GPU-accelerated HMM imple-
mentation against a multi-threaded CPU baseline. Hidden state sizes (N) range
from 218 to 225 and observation lengths (T ) from 210 to 213. For each (N , T )
pair, 10 randomly initialized HMMs were tested with average matrix sparsity of
1%. We used the 99th-percentile execution time to ensure robust comparisons
and analyzed speedup and throughput (in TFLOPS) across CPU and GPU im-
plementations. Experiments ran on a workstation system with an Intel Core
i7-14700K (28 logical cores), 128GB DDR5 RAM, and an NVIDIA A10 GPU
(24GB, 600GiB/s bandwidth). CPU tests used Intel OneAPI with TBB and C
BLAS, while GPU tests employed CUDA 12.6.85 and cuBLAS with nvcc opti-
mizations.

Figure 1 shows the p99 execution time (log scale) of the Baum-Welch al-
gorithm (100 iterations, sequence length 1024) as the number of hidden states
increases. Due to large matrix sizes, our GPU implementation employed cus-
tom memory management techniques described earlier. Single-threaded CPU
execution time grew linearly from 334.6s at N = 218 to 47,350s at N = 225.
The 28-threaded CPU reduced this to 5625.0s (8.4× speedup). In comparison,
our GPU implementation achieved 993.7s at N = 225, a 5.6× speedup over
the multi-threaded CPU, demonstrating both scalability and the effectiveness of
GPU acceleration for large-scale HMM inference.

5 Conclusion

This work presents a GPU-accelerated Baum-Welch algorithm using CUDA cuBLAS
to efficiently scale large Hidden Markov Models. Achieving up to an 8.5× speedup
over multi-threaded CPU approaches, our method leverages log-space computa-
tion, memory-efficient sparse partitioning, and asynchronous data transfer. De-
spite notable gains, challenges in host-device transfer and memory access per-
sist. Future directions include adaptive memory management, hardware-aware
optimizations, and support for next-gen GPU architectures to enable real-time
processing of large-scale HMMs.
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Fig. 1. Execution times (log scale) for Baum-Welch algorithm scaling (100 iterations,
1024 sequence length) with increasing hidden states for single-thread CPU, 28-thread
CPU, and our proposed GPU implementations.
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