Reversed Model Verification by Inferring
Conceptual Models from Simulation Code

Rumyana Neykova' and Derek Groen'

Department of Computer Science, Brunel University London

Abstract. Extracting high-level conceptual models from simulation code
can benefit model validation and verification, system optimisation, and
cross-disciplinary communication. However, conceptual models are often
embedded within implementation details, making them difficult to access
and interpret. This paper explores the feasibility of using Large Language
Models (LLMs) to infer conceptual models from simulation code. We con-
duct a preliminary investigation on an agent-based simulation (Flee),
demonstrating how LLMs can extract key structural, behavioural, and
temporal elements. Our results suggest that LLMs can generate mean-
ingful conceptual representations that align with expert-created models,
offering potential support for model verification. However, we also iden-
tify limitations such as omissions and misinterpretations, highlighting
the need for human oversight. While our study is based on a single ex-
ample, it provides initial insights into the role of LLMs in conceptual
model inference and their potential integration into simulation valida-
tion workflows.

Keywords: Conceptual Model - LLM - Inference.

1 Introduction

Modern simulation systems rely on complex codebases that encapsulate intri-
cate interactions and dynamic behaviors. Despite their importance, the high-
level conceptual models underpinning these simulations often remain implicit
within implementation details, hindering model verification, optimization efforts,
and interdisciplinary collaboration. Traditionally, conceptual models are either
manually extracted by experts—a time-consuming and inconsistency-prone pro-
cess—or neglected entirely, leaving simulations unverified against their concep-
tual foundations. Recent advancements in Large Language Models (LLMs) offer
new opportunities for automating conceptual model inference from simulation
code. This paper investigates whether LLMs can extract accurate conceptual
models from simulation code, what types of insights these models can capture,
and what limitations need to be addressed for effective integration into validation
workflows.

To explore these questions, we apply LLM analysis to infer conceptual models
from a real-world agent-based simulation (Flee), focusing on temporal structure,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

2 R. Neykova et al.

entity behavior, and system architecture. We choose Flee because of its wide up-
take, and because the authors understand the code deeply, allowing for manual
evaluation of results. We evaluate alignment between inferred models and expert-
created representations to assess their applicability for model verification. Our
findings suggest that LLMs can extract meaningful conceptual elements that
support validation, though with limitations requiring human oversight. While
based on a single case, this work demonstrates the potential of LLMs as tools
for conceptual model inference and outlines directions for integrating these ap-
proaches into simulation validation workflows.

2 Related Work

Conceptual Modeling in Simulation Conceptual modeling constitutes the
process of abstracting a model from the real world [12]. Simulations represent
implemented conceptual models, typically through computer programs, though
exceptions exist [5]. Conceptual models are popular because they are easy to
understand and interpret for non-developing researchers 7] and because they
are essential in the early stages of simulation development [4].

The various conceptual model diagrams found in literature differ in scope
and design, often focusing on specific aspects such as time loop dynamics [3, 14],
behavioral elements [10, 15], or system architecture [6, 8], yet these are typically
created manually rather than extracted from implementation code. Model veri-
fication—comparing the conceptual model with its implementation—commonly
relies on targeted tests that ensure specific mechanisms adhere to established
rules [13]. For example, one might check whether floating point representations
in computer code could lead to unintended instabilities in a fluid dynamics al-
gorithm. However, this approach is limited in scope, as many conceptual models
encompass multiple mechanisms, while academic literature frequently presents
diagrams representing substantial portions of the overall model (e.g., Figure one
in Mehrab et al. [9]).

Within this work we attempt to extract these higher level conceptual models

directly from simulation code using a LLM-based approach. To our knowledge,
we are the first to do so.
LLMs for Software Analysis Recent advances in large language models have
led to innovative approaches in automated code analysis and conceptual mod-
eling. Ali et al. [1] demonstrated how LLMs support conceptual modeling by
creating, updating, and visualizing UML diagrams through natural language in-
teractions. Similarly, Nicola et al. [2] explored how LLMs can assist business
process modeling by extracting process models from text and identifying inter-
action patterns that inform modeling best practices. Nam et al. [11] showed that
LLM-based tools can significantly improve code understanding through contex-
tual explanations of unfamiliar code.

While these studies show promising results, they have not been applied to
simulation modeling specifically, nor do they focus on autonomous extraction
from existing code. Most prior work targets general code documentation or sup-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

Title Suppressed Due to Excessive Length 3

Time-Loop Model Entity Behaviour Model System Architecture Model
Represents the simula- Describes the  decision- lllustrates the structural or-
tion's temporal structure, making and interactions of ganisation of the simulation:
including: entities: - Identifies key system com-
- The main simulation - Identifies primary entity ponents and their interfaces.
loop and key phases. types and their roles. - Represents data flow,

- The sequence of events - Captures entity states, de- resource management, and
and their dependencies.  cision logic, and interactions. dependencies.

Fig. 1: Types of Conceptual Models Extracted from Simulation Code.

ports human modelers through interactive workflows rather than direct model
inference. The unique challenges of simulation code—with its complex temporal
structures, entity behaviors, and system interactions—remain unaddressed by
current LLM applications.

3 Conceptual Model Extraction: Approach and Case
Study

To structure conceptual model inference, we define three conceptual model types
that capture distinct aspects of a simulation (Fig. 1). Temporal structure focuses
on the time-loop mechanics of the simulation, capturing key phases, event se-
quences, and dependencies. Understanding the temporal structure is important
for validating whether system processes align with expected time-driven be-
haviours. Behavioural modelling examines entity decision-making and interac-
tions, identifying key agent types, their roles, and the logic governing their state
transitions. Behavioural models are particularly relevant for agent-based simu-
lations, where emergent behaviour depends on individual decision rules. System
architecture analyses the structural organisation of the simulation, identifying
key components, their interfaces, and data flows. Architectural models provide a
high-level view of system composition and modular interactions, which is needed
for understanding dependencies and debugging. These three dimensions align
with established practices in conceptual modelling and provide complementary
perspectives on a system’s operation. By extracting models across these lev-
els, we assess the extent to which LLMs can infer useful abstractions from raw
simulation code.

Case Study: Inferring Conceptual Models from the Flee Simulation.
To evaluate LLM-based conceptual model inference, we conducted experiments
on Flee [3], an agent-based simulation framework designed to model forced mi-
gration patterns. The simulation uses discrete time-stepping to track popula-
tion movements between locations based on conflict dynamics, decision-making
heuristics, and resource availability.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

4

R. Neykova et al.

Tasks performed in Flee 3 for each time step (one day). |

agents

Initialize Simulation

Time Step Loop

—

Flee 3.0 single agent Evolve() function

‘Calculate move.
chance

{pdale Conflict Zone} [Spawn New Agems] Agent Decision Procegs ( Move Agents ]

Update Statistics

End Time Step

Update location
X Output log files
scores and Initial lva\‘lel of — Cvm?Ieve laslem — for location and
spawn any new ™% agents ravel link population

Move the agent o the
nextlocation (or unt the.
daily distance imit is

S

Glear route plan

nitialize weiphts and routes

Rect

Return to start

(c)

(b)

Legend

FLEE Refugee Simulation Architecture S'“‘;‘;’:'m?"”
J L Islmulanon settings [T
Configuratio InputGeog: locations csv Input Processin
nfigur on i raphy P 9 | I yami file front-end script
routes csv
Y ‘Flee component
closures csv
=
Contral simultion controlr and environmant container sim period csv
" ¢ atibutedaa | | | | |- =—-—--=
Simulated refugees leoonooo ) 1 Optional element 1
Agentbenaviour | |~ o ST T
conflict input data @ definition Dats read by
Data passed to

Moving

. Simulation
run scripts.

Spawning

Fleed Ecosystem

Spawning rules

Interiinked with
lLocation scoring rules| =——

ERE) Movement rules

Output/Diagnostics.
Records simulation results and agent rajectories

Key Interactions:

- Ecosystem manages all enites (locations, ks, agents)
- Agents make decisions based on location scores

- Agents move along links between locations

 Logic modules update entity sates each time step.

(e)

(f)

Fig.2: Comparison of LLM-generated diagrams with literature: (a) LLM-
generated time-loop process diagram, (b) time loop process detail from liter-
ature [3], (¢c) LLM-generated agent decision process for calculating link weights,
(d) closest corresponding Flee flowchart from literature [15], (¢) LLM-generated
architectural diagram, and (f) its equivalent in recent literature [3].

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOT] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

Title Suppressed Due to Excessive Length 5

Our analysis was conducted on an 18-file, 5,000-line code base, processed
using Claude Sonnet 3.5. The entire source code was provided to the LLM as
project knowledge, enabling a holistic understanding of the system. The out-
puts were generated through zero-shot prompting, explicitly requesting simpli-
fied high-level overviews. In the case of Fig. 2e, the initial response contained
excessive detail, prompting us to refine our request for a more abstract rep-
resentation. Additionally, we specified visualization in React.js format rather
than Mermaid, both being supported by Claude. To extract conceptual models,
we employed structured queries to guide the LLM’s analysis. For instance, to
obtain the system architecture model shown in Fig. 2e, we used the following
initial prompt: Visualise a high-level architectural diagram of the simulation code
in your project knowledge. Showing the main components and their interactions.

The results are summarised in Fig. 2, which presents examples of inferred
time-loop, entity behaviour, and system architecture models. Section 4 evalu-
ates these models by comparing them with the original simulation code and
conceptual models from the literature.

4 Evaluation

Within this section, we present three LLM generated diagram examples, and
provide a brief reflection on their quality. Our evaluation assesses the LLM-
generated conceptual models based on accuracy (alignment with code), com-
pleteness (coverage of key elements), and interpretability (clarity of presenta-
tion). Table 1 summarizes the quantitative assessment of shortcomings across
all three model types.

We present two time loop representations from the Flee ABM in Fig. 2a—2b.
The LLM-generated diagram effectively captures most conceptual elements with
correct terminology, but shows four specific inconsistencies: (i) omitted score up-
dating for non-conflict zones, (ii) mislabeled "update statistics" instead of output
writing, (iii) incomplete agent decision process missing the finish travel task,
and (iv) incorrect sequencing of conflict zone updates. Table 1 indicates only
one missing concept element, suggesting high fidelity. Both LLM and literature
diagrams show strong consistency, with the former highlighting the flow from be-
ginning to end (the literature diagram focuses only on the loop iterations), and
the latter providing more zoom-in detail on the agent decision-making process.

We present agent decision representations in Fig. 2c-2d. The LLM diagram
captures the link weight calculation algorithm comprehensively despite format-
ting issues, with three specific shortcomings: (i) the loop arrow is inverted, (ii)
the “Yes” part in the endpoint link loop seems to be placed one arrow too high,
(iii) the arrows around the “is link endpoint in origin names” are incorrectly
arranged. Table 1 shows arrow labeling as the most significant issue, with four
incorrect labels. Interestingly, the closest conceptual diagram we could locate
in the literature is not similar at all, as all the logic in the LLM-generated fig-
ure is only represented by a single box (“pick destination”). Therefore, despite
its shortcomings, the LLM-generated diagram exposes important conceptual el-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

6 R. Neykova et al.

ements of the Flee code, particularly because the generation and weighting of
possible agent routes is a fundamental aspect of the agent decision-making. In
addition, the LLM has successfully picked up the concept and functionality of
marker locations (including the need to adjust step numbers), which is something
that has not been clearly covered in any of the existing literature.

Fig.2f shows architectural diagrams of Flee. The LLM version depicted in
Fig.2e identifies essential components—inputs (top), ecosystem objects (top mid-
dle), dynamical components (middle bottom), and outputs (bottom)—connected
via triangular indicators. The literature diagram (Fig.2f) offers more detailed re-
lations and explicit file type names, though both share clear commonalities in
ecosystem and agent behavior modules. Key shortcomings in the LLM diagram
include: (i) missing backlinks from behavioral definitions to Ecosystem objects
and (ii) vague configuration elements. Table 1 shows this diagram contains fewer
issues than the other conceptual models.

Across all three model types, we observe that LLMs excel at identifying
main components and general flows, but struggle with precise relationship details
(particularly directional relationships) and specific technical terminology. The
time loop model exhibits the highest overall accuracy, likely due to its explicit
sequential structure in the code, while the agent decision model presents the
most challenges in accurately representing complex conditional logic.

5 Discussion and Conclusions

Conceptual model extraction has not been widely explored for model verifica-
tion because manual extraction is often tedious and sometimes intractable. The
ease with which LLMs can generate various levels of conceptual model details
from implementations urges revisiting the role these extractions can play in un-
derstanding and verifying simulation behavior. What was previously considered
impractical due to the effort involved can now potentially become an integral
part of simulation development and validation workflows.

Our preliminary investigation demonstrates that LLMs offer potential for
conceptual model inference across multiple dimensions of simulation systems.
This allows for simulation verification at multiple levels: from time-stepping

Table 1: Evaluation overview of LLM-extracted conceptual diagrams

Shortcoming ## of occurrences for each diagram
time loop agent decision architecture
Wrong arrows 1 2 1
Wrong arrow labels 0 4 0
Non-diagram elements 0 0 4
Missing relevant concept element 1 0 0
Overly vague concept element 2 0 1

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

Title Suppressed Due to Excessive Length 7

mechanics to agent decision logic to system composition. LLMs can identify
relationships that would otherwise require manual analysis, provide readable
abstractions for domain experts without programming knowledge, and surface
inconsistencies between implementation and intended behavior. We have demon-
strated that it is possible to create high-fidelity conceptual models automatically.
The quality of the extracted models in our case study suggests that the poten-
tial benefits substantially outweigh the current limitations, warranting further
exploration of this approach.

Our study raises important questions about how code commenting style,
documentation quality, and naming conventions influence conceptual model ex-
traction. While we haven’t explicitly tested this influence, we suspect that well-
structured comments and semantically meaningful filenames likely enhance LLM
extraction performance significantly. For simulation developers, this suggests an
opportunity to strategically instrument code with conceptual markers, standard-
ized documentation patterns, or explicit annotations that could guide more ac-
curate model extraction. The optimal format and extent of such instrumentation
remains unexplored, presenting a promising direction for developing standards
that maximize verification benefits while minimizing documentation overhead.

In terms of limitations, we have shown that inferred models can exhibit im-
precise event sequencing, oversimplified interactions, and miss subtle concep-
tual elements. Expert validation therefore remains necessary to refine the LLM
outputs. In addition, our explorative study examines one simulation code base
(Flee), so assessing broader applicability requires further research. In general,
reproducibility presents a significant challenge for LLMs. As their outputs can
vary between runs and across different model versions, the conceptual models
generated may not be consistent.

In recent times, developers increasingly rely on LLMs, instead of program-
ming skills, for application development. Our approach could help these develop-
ers to check whether LLM-guided implementations align with their conceptual
vision. Furthermore, our findings suggest several integration directions: imple-
menting regular conceptual extraction during development, analyzing models
from different implementations of the same system, linking conceptual elements
to specific code segments, and creating interfaces for expert review.

Rather than a complete solution, our work serves as a call to action for
the simulation community to explore these capabilities further. By investigat-
ing across diverse simulation domains and developing specific methodologies for
extraction and verification, we can improve the reliability and transparency of
simulation-based research.

Acknowledgments. This work has been supported by the SEAVEA ExCALIBUR
project, which has received funding from EPSRC under grant agreement EP/W00771/1.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

8

R. Neykova et al.

References

10.

11.

12.

13.

14.

15.

. Ali, S.J., Reinhartz-Berger, 1., Bork, D.: How are LLMs Used for Conceptual

Modeling? An Exploratory Study on Interaction Behavior and User Perception.
In: Maass, W., Han, H., Yasar, H., Multari, N. (eds.) Conceptual Modeling, pp.
257-275. Springer Nature Switzerland (2025). https://doi.org/10.1007/978-3-031-
75872-0 14

. De Nicola, A., Formica, A., Mele, I., Missikoff, M., Taglino, F.: A com-

parative study of LLMs and NLP approaches for supporting business
process analysis. Enterprise Information Systems 18(10), 2415578 (2024).
https://doi.org/10.1080,/17517575.2024.2415578

. Ghorbani, M., Suleimenova, D., Jahani, A., Saha, A., Xue, Y., Mintram, K., Anag-

nostou, A., Tas, A., Low, W., Taylor, S.J., et al.: Flee 3: Flexible agent-based sim-
ulation for forced migration. Journal of Computational Science 81, 102371 (2024)
Groen, D., Suleimenova, D., Jahani, A., Xue, Y.: Facilitating simulation develop-
ment for global challenge response and anticipation in a timely way. Journal of
Computational Science 72, 102107 (2023)

Holmberg, E.: On the clustering tendencies among the nebulae. ii. a study of en-
counters between laboratory models of stellar systems by a new integration proce-
dure. Astrophysical Journal, vol. 94, p. 385 94, 385 (1941)

. Hussan, J.R., Hunter, P.J.: Comfort simulator: A software tool to model ther-

moregulation and perception of comfort. Journal of Open Research Software 8(1),
16 (2020). https://doi.org/10.5334/jors.288

Liu, J., Yu, Y., Zhang, L., Nie, C.: An overview of conceptual model for simulation
and its validation. Procedia engineering 24, 152-158 (2011)

Luo, L., Zhou, S., Cai, W., Low, M.Y.H., Tian, F., Wang, Y., Xiao, X., Chen, D.:
Agent-based human behavior modeling for crowd simulation. Computer Animation
and Virtual Worlds 19(3-4), 271-281 (2008). https://doi.org/10.1002/cav.238
Mehrab, Z., Stundal, L., Venkatramanan, S., Swarup, S., Lewis, B., Mortveit, H.S.,
Barrett, C.L., Pandey, A., Wells, C.R., Galvani, A.P., et al.: An agent-based frame-
work to study forced migration: A case study of ukraine. PNAS nexus 3(3), pgae080
(2024)

Molina, T., Ortega, J., Mufoz, J.: HELMpy, open source package of
power flow solvers. Journal of Open Research Software 9(1), 23 (2021).
https://doi.org/10.5334 /jors.310

Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., Myers, B.: Using an
LLM to Help With Code Understanding. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. pp. 1-13. ACM (2024).
https://doi.org/10.1145/3597503.3639187

Robinson, S.: Conceptual modeling for simulation. In: 2013 Winter Simulations
Conference (WSC). pp. 377-388. IEEE (2013)

Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of
the 2010 winter simulation conference. pp. 166-183. IEEE (2010)

Schmieschek, S., Shamardin, L., Frijters, S., Kriiger, T., Schiller, U., Harting, J.,
Coveney, P.: LB3D: A parallel implementation of the Lattice-Boltzmann method
for simulation of interacting amphiphilic fluids. Computer Physics Communications
217, 149-161 (2017). https://doi.org/10.1016 /j.cpc.2017.03.013

Suleimenova, D., Bell, D.,; Groen, D.: A generalized simulation development ap-
proach for predicting refugee destinations. Scientific reports 7(1), 13377 (2017)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_43 |



https://dx.doi.org/10.1007/978-3-031-97635-3_43
https://dx.doi.org/10.1007/978-3-031-97635-3_43

