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Abstract. Urban scaling studies have gained popularity in the last two decades, 
summarising urban attributes' variation with population. Recent research, how-
ever, highlights scaling exponents' sensitivity to industry-specific dynamics, pop-
ulation cut-offs, and data distribution. Despite this, few studies systematically 
examine industry scaling using plant-level data while accounting for sector-spe-
cific externalities. This study addresses that gap by analysing longitudinal data 
on green electricity firms across 968 NUTS (Nomenclature of Territorial Units 
for Statistics)-3 regions in 14 European countries (1985-2023). We assess how 
scaling exponents for firm entry and concentration vary across population cut-
offs, both with and without controls for agglomeration externalities. Our findings 
reveal predominantly sublinear scaling, suggesting that population size alone 
does not drive green energy growth. Concentration consistently scales more 
strongly than entry, indicating that large cities are more conducive to firm sur-
vival than to the creation of new firms. When agglomeration externalities are not 
controlled for, scaling exponents are systematically underestimated. While vari-
ability is observed in regions at population extremes, results remain robust across 
cutoffs, especially when using inverse thresholds. Comparative analysis with 
high-tech service and manufacturing sectors confirms sublinear scaling in entry 
across all sectors, with green electricity showing the lowest exponent, reinforcing 
its maturity and low innovation intensity. These findings align with the Smart 
Specialization framework, emphasizing the importance of targeted institutional 
support, supplier networks, and sector-specific strategies. They also highlight the 
potential for smaller or lagging regions to take a more active role in the green 
transition, particularly within cohesion policy efforts. 
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1 Introduction 

Originally developed to explain biological scaling, the concept of scaling has been in-
creasingly applied in urban studies over the past two decades (Cottineau et al., 2017). 
Urban scaling theory offers a unified framework to describe how city attributes, such 
as GDP, wages, and innovation, scale with population, typically in a superlinear manner 
due to intensified socio-economic interactions (Bettencourt, 2013). However, recent 
work challenges the focus on aggregate measures, showing that specific industrial con-
centrations contribute significantly to observed scaling patterns (Sarkar et al., 2020). 
Despite this, most scaling studies have only indirectly addressed industry emergence 
and concentration, often using employment or patent data. Some evidence suggests that 
high-tech and complex economic activities scale superlinearly, while lower-tech sec-
tors like manufacturing and utilities exhibit sublinear scaling (Arcaute et al., 2015; Bal-
land et al., 2020; Cottineau et al., 2017). Traditionally, such questions have fallen 
within the domain of agglomeration literature, which attributes industry concentration 
to co-location benefits from similar, related, or diverse firms (Jacobs, 1970; Marshall, 
1920). In contrast, the scaling literature treats these externalities as endogenous out-
comes of increasing size, typically omitting industry-specific controls and overlooking 
policy relevance at the sectoral level. Importantly, scaling benefits are not static. Indus-
try life cycles and innovation intensity influence spatial patterns, with young industries 
concentrating in large cities and mature sectors dispersing over time industries (Frenken 
et al., 2015; Pumain et al., 2006). Yet, most scaling analyses are cross-sectional and 
rarely incorporate temporal dynamics or granular plant-level data, which are essential 
for understanding medium- and low-tech sectors with limited patent activity (De Groot 
et al., 2016). Moreover, scaling estimates are highly sensitive to population cutoffs and 
underlying data distribution, raising further concerns when applying them for policy 
purposes (Cottineau et al., 2017; Leitao et al., 2016). This paper addresses these gaps 
by focusing on the green energy sector, whose spatial distribution has become a key 
interest for policymakers aiming to support sustainable transitions and regional job cre-
ation. Traditionally seen as a low-tech, regulated industry, the sector has been trans-
formed by liberalisation (Bolton, 2021; Hancher & De Hauteclocque, 2010) and sus-
tainability transitions such as decentralised production and demand-side management 
(de Gooyert et al., 2016; Tayal, 2016). Innovation has increasingly shifted down-
stream—from hardware to grid integration—giving the sector a hybrid character: tech-
nologically sophisticated but relatively mature in terms of firm entry (Huenteler et al., 
2016). Both supply-side externalities and demand-side factors (Bednarz & Broekel, 
2020; Geels & Schot, 2007) are critical to its evolution, making it a valuable case for 
assessing the interaction between population size, industrial dynamics, and agglomer-
ation effects. This paper investigates three core questions: How do entry and concen-
tration of green energy firms scale with population size over time? How sensitive are 
these scaling patterns to population cutoffs and industry-specific controls? How does 
the green energy sector compare to other sectors in terms of scaling behavior, innova-
tion intensity, and maturity? The analysis covers electricity utilities involved in green 
energy production, transmission, distribution, and trading across 968 NUTS-3 regions 
in 14 European countries from 1985 to 2023. For comparison, we utilize one high-tech 
service sector and three manufacturing sectors with varying knowledge intensities. Our 
results show that green energy firm entry and concentration generally scale sublinearly, 
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suggesting that population size alone does not drive the sector’s growth. Concentration 
shows higher scaling exponents than entry, indicating that larger regions better support 
firm survival than foster new ones. Sensitivity to population extremes raises caution 
regarding the interpretation of edge cases, but results remain robust across a range of 
population thresholds, particularly when using inverse cutoffs. Moreover, without ac-
counting for agglomeration effects, scaling exponents are systematically underesti-
mated. Compared to benchmark sectors, green energy firms display the lowest scaling 
exponents for entry, reinforcing the sector’s classification as mature and relatively low 
in innovation intensity. The remainder of the paper is structured as follows: Section 2 
reviews the sensitivity of scaling estimates. Section 3 outlines data and methods. Sec-
tion 4 presents the results. Section 5 discusses the implications, followed by conclusions 
in Section 6. 

2 Scaling and its Sensitivity 

Scaling laws offer a concise way to describe how system attributes change with size, 
typically expressed as a power-law: 

 Y = αXβ, (1) 

where Y is the attribute of interest (e.g., GDP), X is population, β is the scaling exponent, 
and α is a constant. In urban contexts, these laws help summarise how characteristics 
vary across cities. Depending on the value of β, scaling can be sublinear, linear, or 
superlinear (Bettencourt, 2013). Scaling laws can be seen as a generalisation of the 
Cobb-Douglas production function used in economics: 

 Y = αLβK1-β,  (2) 

where L and K denote labor and capital and the exponents are assumed to sum to 1, 
implying constant returns to scale. Unlike Cobb-Douglas, scaling laws relax the as-
sumption of constant returns, replacing labour and capital with population (Lobo et al., 
2013; Ribeiro et al., 2019). However, population alone may not fully capture produc-
tivity dynamics. Early work (Hyclak, 1986; Moomaw, 1981) showed its influence 
weakens when accounting for capital and labour inputs. More recent studies use dis-
aggregated data: Sarkar et al. (2020) found superlinear scaling in knowledge-intensive 
sectors (localisation externalities) and linear returns across broader industry categories 
(urbanisation externalities) in Australian cities. Cottineau et al. (2017), examining 
French cities, reported that scaling exponents vary by industry type and population 
thresholds—high-tech sectors exhibit higher exponents in larger cities, while manufac-
turing and utilities often scale sublinearly. Crucially, the choice of model affects results 
(Shalizi, 2011), and high heteroskedasticity and fat-tailed distribution of city sizes can 
distort results (Leitao et al., 2016). 
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3 Data and Methods 

The analysis includes 962 NUTS-3 regions in 14 European countries: Austria, Belgium, 
Denmark, Finland, France, Germany, Greece, Italy, Ireland, the Netherlands, Norway, 
Portugal, Spain, and Sweden, from 1985 to 2023. We use Orbis Bureau van Dijk (BVD) 
for firm entries and exits, and Eurostat for population, GDP, and employment. We use 
the North American Industry Classification System (NAICS) code 2211 to query elec-
tricity generation, transmission, and distribution utilities. The 6-digit NAICS codes 
identify firms active in solar (221114), wind (221115), geothermal (221116), and nu-
clear (221113) electric power generation. For comparison of emergence and concentra-
tion dynamics, we also query firms in four other sectors:  one high-tech sector, Scien-
tific Research and Development Services (5417), and three manufacturing sectors with 
varying knowledge complexity: Semiconductor and Other Electronic Component Man-
ufacturing (3344), Plastics Product Manufacturing (3261), and Iron and Steel Mills and 
Ferroalloy Manufacturing (3311). We assess scaling patterns by estimating the follow-
ing power-law relationship: 

 log10y = log10c + βlog10x + ε (3) 

where y is either the number of entries of green energy companies in that region or the 
total number of active green energy companies in that region, x is the population of a 
NUTS 3 region, and β is the scaling exponent. To evaluate robustness, we estimate β 
across a series of population thresholds—both increasing and decreasing in increments 
of 10,000—by subsetting the data accordingly. This allows us to assess the sensitivity 
of scaling behavior due to potential distortions caused by extreme values in small or 
large regions. After calculating scaling exponents without controlling for industry-spe-
cific effects, we proceed to do so using a log-additive function similar to the one used 
by Shalizi (2011): 

 log10y = log10c + βlog10x + ∑ 𝑓!
"#$ j(xj) + uit, (4) 

where each 𝑓𝑗(𝑥𝑗) denotes log-linear control terms and uit captures the spatial (country-
level) and temporal (annual) fixed effects, as scaling exponents vary over time (Figure 
1). Controls include Marshallian and Jacobean externalities, related variety, GDP per 
capita, and employment rate—computed following the method of Kundu et al. (2025). 
Finally, we compare firm entry scaling across the green energy sector and the four 
benchmark sectors. Due to data limitations (no reliable firm exit information), compar-
isons are limited to firm entry dynamics and do not include active firm concentrations. 

4 Results 

4.1 Without Controlling for Industry-Specific Factors 

Figure 1a shows that firm concentration exhibits a gradual increase in scaling expo-
nents, rising from ~0.4 (no cutoff) to ~1 at a 1.3 million population cutoff, eventually 
plateauing around 4.5 million. For firm entry (Figure 1b), the exponent increases from 
~0.2 to ~1 by a 2 million cutoff, with a similar plateau. Notably, concentration rises 
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more steeply than entry, suggesting better survival prospects for firms in larger cities. 
Using inverse population cutoffs (i.e., excluding larger cities), scaling exponents are 
more stable. For concentration, the exponent hovers around 0.35, dropping slightly 
when cities over 1 million are excluded. Entry follows a similar trend, remaining around 
0.2 and dipping to 0.1 after the same cutoff.  

 
Fig. 1. Varying scaling exponents of firm concentration (orange) and firm entry (green) with a) 
positively incremental population cut-offs and b) inverse population cut-offs. Grey dashed lines 
indicate the upward trend in industry concentration scaling exponents over the past three decades. 
In panel (a), the trend line is truncated at a population threshold of 3 million due to instability in 
results caused by limited data beyond that point. 

4.2 Controlling for Industry-Specific Factors 

After adjusting for agglomeration externalities, GDP per capita, and employment rate, 
firm concentration (Figure 2a) starts superlinear (~1.1) and stabilizes near this level, 
dipping briefly between 2.5–3 million before sharply rising and becoming unstable due 
to limited data. Entry (Figure 2b) follows a similar shape but with lower exponents. 
Inverse cutoff results are again more stable—concentration stabilizes around 0.8, and 
entry near 0.2—remaining sublinear in all cases. 

 
Fig. 2. Varying scaling exponents of firm concentration (orange) and firm entry (green) with a) 
positively incremental population cut-offs and b) inverse population cut-offs when controlling 
for agglomeration externalities, GDP per capita, and employment per capita. 
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4.3 Comparison with Other Sectors 

Without controls (Figure 3a), all sectors show similar trends until diverging around a 
3.5 million population cutoff. After adjusting for industry factors (Figure 3b), Scientific 
R&D consistently shows the highest scaling (0.75), followed by Plastics (0.55), Semi-
conductors (0.5), and Iron & Steel (0.35). All sectors exhibit a slight drop at higher 
inverse cutoffs before becoming unstable. 

 
Fig. 3. Varying scaling exponents of firm entry with positively incremental population cut-offs, 
a) without controls, and b) with inverse population cut-offs when controlling for industry-specific 
factors for the four different sectors. 

5 Discussion 

This study examined the scaling of green electricity utilities, with and without industry-
specific controls, across a range of population cutoffs. Using plant-level data, we found 
that both firm entry and concentration generally scale sublinearly, except in highly pop-
ulous regions where scaling can appear superlinear. Electricity utility concentration 
consistently exhibits higher scaling exponents than entry, indicating population size 
supports firm survival more than new firm formation. Our results highlight the sensi-
tivity of scaling estimates to both extremes of the regional size distribution. This pattern 
in terms of firm entry appears consistent across sectors, raising questions about the 
validity of scaling results in edge cases. Importantly, results suggest that without ag-
glomeration externalities, size alone does not drive green sector growth, particularly for 
new entrants. While transition literature often emphasizes demand-side factors for 
green energy sector niche creation, our findings underscore the continued importance 
of supply-side dynamics like knowledge spillovers. Additionally, scaling exponents are 
often underestimated without industry-specific controls. Even with rising exponents 
over time, low-tech sectors continue to exhibit higher scaling than green electricity, 
suggesting that recent claims of increased sectoral complexity may be overstated. De-
spite recent criticisms of sensitivity issues, scaling literature remains a valuable frame-
work for cross-sector comparisons. However, categorizing sectors as sublinear, linear, 
or superlinear based solely on firm entry may be unrealistic. While edge cases pose a 
challenge, claims of population cut-off sensitivity appear overstated, as robust results 
were observed with inverse population cut-offs. 
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6 Conclusion 

This paper explored the scaling behavior of green electricity utilities, contrasting the 
assumptions of urban scaling and agglomeration literature. The scaling literature, based 
on a framework of interaction networks, treats externalities, including diversity and 
specialization, as endogenous outcomes of increasing size. The interest in scaling lies 
not at the sectoral level but rather in the aggregate behavior of cities. In contrast, ag-
glomeration literature considers agglomeration externalities—such as Marshallian, Jac-
obean, and related externalities—distinct from size-derived benefits, which are catego-
rized as urbanization externalities. Our findings show that accounting for industry-spe-
cific agglomeration externalities yields distinct scaling results, raising questions about 
the scaling approach. However, we suggest that concerns regarding the sensitivity of 
scaling exponents may be slightly overstated when excluding edge cases. Green elec-
tricity utilities largely scale sublinearly, with lower exponents than most other sectors, 
supporting their characterization as mature and relatively low in innovation intensity. 
The study focuses on green electricity utilities using the location of company headquar-
ters rather than subsidiaries, as these are more likely to be knowledge centers driven by 
supply-side knowledge externalities and are less spatially constrained by energy pro-
duction demands. These insights are especially relevant for regional transition and co-
hesion policies. Rather than relying solely on population size or general economic di-
versification, regions should focus on fostering targeted institutional support, supplier 
ecosystems, and industry-specific capabilities. This aligns well with the Smart Special-
ization approach and suggests the potential of smaller or lagging regions playing a more 
strategic role in the green transition. Future research could incorporate firm-level het-
erogeneity, such as differences in absorptive capacity and whether a firm is a typical 
spinoff or a new startup, to understand scaling dynamics better, as agglomeration ex-
ternalities may affect these firms differently. Finally, due to limited data on employee 
numbers, we are constrained in assessing consolidation in large regions, which may 
underrepresent the sector's presence. Future studies could address this gap by combin-
ing granular occupation data with plant-level data. 
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