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Abstract. Accurate identification of individual cattle is vital for herd
management, disease control, and traceability, yet traditional methods
like ear tags and RFID are labor-intensive and unreliable for large-
scale use. Leveraging advances in computer vision, we propose a novel
cattle recognition framework combining Vision Transformers with two-
dimensional masked Retention Networks. Evaluated on a self-collected
video dataset of 50 cattle, focused on muzzle features, our model effi-
ciently handles high-resolution frames and achieves 91.5% accuracy out-
performing state-of-the-art methods. The Retention Network enhances
scalability by reducing computational overhead, making the system ro-
bust under challenging conditions like occlusions and variable lighting.
Our approach provides a practical and high-performing solution for au-
tomated cattle identification in precision livestock farming.

Keywords: Cattle identification · Convolutional Neural Networks · Vi-
sion Transformers · Retention Networks.

1 Introduction

Accurate cattle identification plays a pivotal role in modern livestock man-
agement, facilitating health monitoring, resource optimization, and traceability
within the food supply chain. Traditional methods, such as ear tags, branding,
and RFID chips, remain prevalent but face limitations including labor intensity,
risk of loss or damage, and the need for specialized equipment [8] [1][12]. These
shortcomings have motivated the exploration of biometric-based approaches,
which offer a non-invasive and potentially more reliable alternative. Recent stud-
ies, including Li et al. [6], have proposed multi-modal biometric systems com-
bining muzzle patterns, facial features, and ear tags to improve identification
accuracy in diverse farm conditions.

Among biometric features, muzzle pattern recognition has emerged as a par-
ticularly robust modality due to the uniqueness and lifelong permanence of the
pattern, similar to human fingerprints. As shown in Fig. 1, each cattle’s muzzle
exhibits a distinct arrangement of beads and ridges that remains unchanged over
time, enabling consistent and precise identification. Unlike RFID or visual tags,
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Fig. 1. Muzzle patterns in cattle nose that makes every cattle unique

muzzle-based systems eliminate the risk of physical degradation or detachment,
offering a highly dependable solution for automated cattle verification without
additional hardware. This makes it well-suited for scalable deployment in open-
farm settings.

The integration of deep learning with computer vision has significantly ad-
vanced automated cattle recognition. While early approaches based on hand-
crafted features and shallow classifiers showed limited robustness, modern mod-
els such as Convolutional Neural Networks[10] have improved performance by
learning complex visual patterns. However, CNNs predominantly capture local
features and often fail to encode global context, a crucial aspect for distinguish-
ing between visually similar individuals[11][9]. To overcome this, we introduce
a novel architecture combining Vision Transformers (ViTs) with Retention Net-
works. ViTs excel at capturing global dependencies through self-attention, but
their quadratic complexity hinders real-time use. We address this by introducing
a two-dimensional masking strategy to extract both spatial and temporal cues
as well as reduced computational overhead from video data.

2 Proposed Approach

2.1 Data Acquisition and Preprocessing

We collected high-definition muzzle-focused cattle videos from Banaras Hindu
University farms, covering 50 cattle across diverse conditions. Videos were seg-
mented into frames, resized and normalized to reduce lighting and contrast vari-
ation. The resulting dataset was partitioned in an 80:20 ratio, where 80% of the
images were used for training and the remaining 20% were reserved for valida-
tion.

2.2 Proposed Model

We extend ViTs with Retention Networks to capture spatial and temporal fea-
tures using a 2D masking approach. Fig. 2 shows the full architecture.
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Fig. 2. Architecture of the frame-wise processing and cross-chunk integration in Re-
tention Networks

Division of Images into Frames Videos are divided into frames {x1, x2, . . . , xT }
enabling frame-wise spatial analysis and efficient temporal modeling. Each frame
was divided into non-overlapping patches of size P×P , which were then flattened
and linearly projected into D-dimensional embeddings. Positional encoding was
added to retain spatial information:

xp = Flatten(xp) ·We (1)

where xp is the p-th patch and We is the learnable embedding matrix. To retain
spatial positional information, a positional encoding vector ep was added to each
patch embedding, further resulting in a sequence of embedded patches

zp = xp + ep (2)

Z = [z1, z2, . . . , zN ] (3)

where N is the total number of patches per frame.

Parallel Mechanism for Frame-wise Processing Each frame xi is processed
independently to extract spatial features using ViT self-attention, mathemati-
cally, for a given frame xi, the feature representation is computed as:

InnerChunk(xi) = QiK
†
i Vi, (4)

where Qi,Ki, Vi represent the query, key, and value matrices computed for the
frame xi.
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Cross-Chunk Integration for Temporal Dependency Temporal relation-
ships across frames are captured via a retention mechanism for a chunk of frames
{xi+1, xi+2, . . . , x2i}, the cross-chunk output is computed as

CrossChunk(xi) = QiRi−1 +K†
i Vi, (5)

where Ri−1 represents the retention state from the previous chunk. This mech-
anism allows the model to integrate both local (intra-frame) and global (inter-
frame) information.

Combining Results Final sequence representation combines spatial and tem-
poral outputs:

Output = InnerChunk(xi) + CrossChunk(xi). (6)

Algorithm 1 Model Processing Pipeline
1: Input: Video V → Clips {Cn} → Frames {ft} ∈ RH×W×3

2: Patching: Split each ft into P = H
h

· W
w

patches {xt
p}, then flatten to sequence

{x1, . . . , xT ·P }
3: CNN Embedding:
4: Apply 3× 3 conv ϕ1(x) → etp ∈ Rd1

5: Normalize: êtp = BatchNorm2d(etp), activate: GELU(êtp)
6: Refine via 1× 1 conv ϕ2(x) → etp ∈ Rd2

7: Retention Block (Depth D):
8: for d = 1 to D do
9: z1 = LayerNorm(z)

10: z2 = Dropout(QK⊤V ) + z ▷ Self-retention + residual
11: z3 = LayerNorm(z2)
12: z = Linear(GELU(Linear(z3))) + z2
13: end for
14: Classification: y = Linear(z) → RC

2.3 Retention Network with 2D Mask

1D masks fail to capture 2D spatial dependencies. We introduce a 2D decay-
based spatial mask to address this. The 2D mask uses a decaying weight α to
capture dependencies across spatial neighbors

Dnm
2d = γ|xn−xm|+|yn−ym| (7)

For example, the 2D decay matrix for a small patch grid can be represented
as: 

1 α α α2

α 1 α2 α
α α2 1 α
α2 α α 1
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Incorporating this mask into the attention mechanism, the retention operation
is computed as

Sn = γSn−1 +K⊤V (8)

Xn = QSn (9)

where γ is the decay factor that determines the contribution of previous retention
states. The working mechanism of our method is shown in Algorithm 1.

3 Experimental Results and Discussions

3.1 Experimental Setup

The experiments were performed on a Windows 11 system with an Intel Core
i5-8265U CPU (1.60 GHz, 5 cores), 8GB RAM, and Intel UHD Graphics 620.
The models were implemented using Keras 2.11 with TensorFlow 2.11, providing
a stable environment for training and evaluation.

3.2 Results and Analysis

Fig. 3. Training and Validation Performance Curves

As illustrated in Fig. 3, both training and validation losses steadily decline,
and accuracies rise, stabilizing above 90% after 40 epochs. The close alignment
of the curves indicates effective learning and strong generalization, with minimal
signs of overfitting.

As shpwn in Table 1, our model achieves 91.5% accuracy, outperforming
ViViT, MViT, and TAN. It also leads in Precision (91.0%), Recall (90.8%), and
F1 Score (90.9%), owing to its 2D-Mask Retention Network and Transformer-
based attention mechanisms that enhance spatiotemporal representation.

Optimal performance is achieved with a learning rate of 0.1 and dropout of
0.2, as shown in Table 2. Lower rates slow convergence, while higher ones reduce
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Table 1. Comparison with State-of-the-Art Models for Video Classification

Model Acc. (%) Pre. (%) Rec. (%) F1 (%)
TAN (Temporal Attention Networks) [7] 90.5 89.8 89.5 89.6
ViViT (Video Vision Transformer) 91.3 90.5 90.0 90.2
TimeSformer [2] 90.0 89.0 88.5 88.7
MViT (Multiscale Vision Transformers) [4] 91.0 90.2 89.8 90.0
X3D [5] 90.8 90.0 89.5 89.7
I3D (Inflated 3D ConvNet) [3] 89.7 88.9 88.4 88.6
Proposed Model 91.5 91.0 90.8 90.9

Table 2. Hyperparameter tuning results for various learning rates(LR) and dropout
rates. The table shows the training and validation accuracy(%) for each combination
of values.

LR Drop Rate Fold-1 Fold-2 Fold-3
Train Acc. Val Acc. Train Acc. Val Acc. Train Acc. Val Acc.

0.01
0.2 92.3 88.0 92.5 88.3 92.4 88.2
0.4 91.8 87.5 92.0 87.7 91.9 87.6
0.5 91.2 86.8 91.4 87.0 91.3 86.9

0.1
0.2 94.1 89.0 94.2 89.2 94.1 89.1
0.4 93.5 88.4 93.6 88.7 93.5 88.6
0.5 92.9 87.8 93.0 88.0 92.9 87.9

0.2
0.2 94.5 87.5 94.7 87.7 94.6 87.6
0.4 94.0 88.0 94.2 88.2 94.1 88.1
0.5 93.4 88.5 93.6 88.7 93.5 88.6

Table 3. Ablation study on various class subsets and image resolutions, showing Top-1
and Top-5 accuracy(%) using K-Fold cross-validation.

Image
Size Classes 2-Fold 3-Fold 4-Fold

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

642
50 85.3 86.7 85.8 87.5 86.1 87.9
20 86.5 88.2 87.1 88.9 87.3 89.2
10 88.4 89.7 88.8 90.2 89.0 90.6

1282
50 87.2 88.5 87.6 89.2 87.9 89.5
20 88.7 89.9 89.1 90.6 89.4 90.8
10 90.3 91.1 90.6 91.4 90.8 91.5

generalization. Excessive dropout also harms accuracy, confirming the selected
configuration balances learning and regularization effectively.

From Table 3, higher resolution (128×128) images yield superior accuracy
across all folds and class subsets. Increasing class count decreases accuracy due
to task complexity, but the model maintains stability. More folds improve gen-
eralization, reinforcing the trade-off between complexity and performance.

Table 4 shows that Cross Entropy yields the best Top-1 (90.3%) and Top-5
(91.8%) accuracy. While other loss functions (e.g., Focal, Triplet, Label Smooth-
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Table 4. Comparison of loss functions used in the model training with Top-1 and
Top-5 accuracy.

Loss Function Top-1 Accuracy (%) Top-5 Accuracy (%)
Label Smoothing 88.9 90.7

NLLLoss 87.2 89.5
Focal Loss 89.5 91.0
Triplet Loss 89.0 90.5

CrossEntropy 90.3 91.8

ing) offer specific benefits, none outperform Cross Entropy in balancing precision
and robustness for classification.

Fig. 4. (a) Confusion Matrix (b) t-SNE graph

Fig.4(a) shows high classification accuracy with minor errors in classes 2 and
8. The t-SNE plot in Fig.4(b) confirms well-separated feature clusters, validating
that the model captures discriminative representations suitable for robust cattle
identification.

4 Conclusion and Future Work

This study presents a cattle identification method combining Vision Transform-
ers with a 2D mask-based Retention Network, achieving 91.5% testing accu-
racy on a self-collected muzzle video dataset of 50 cattle. The 2D mask effec-
tively captures spatial and temporal features, addressing inter-class similarity
and intra-class variability. Compared to CNNs, the model improves feature ex-
traction while reducing ViTs’ complexity from quadratic to linear, enabling effi-
cient real-time deployment. ViTs’ self-attention mechanism enhances robustness
under occlusions and lighting variations, making the system suitable for preci-
sion livestock management. Despite strong results, limitations include a small,
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less diverse dataset and training under semi-controlled conditions, which may
affect real-world performance. Future work will involve dataset expansion, do-
main adaptation, unsupervised learning, and multimodal biometric integration.
Edge-based deployment will also be explored for real-time on-farm applications.
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