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Abstract. Optimizing supercomputer software requires identifying pa-
rameter configurations that maximize performance. However, the wide
range of parameter values and their varying impact across systems make
traditional identification methods insufficient, highlighting the need for
new approaches to performance prediction and parameter tuning. We
propose Surrogate-Based Modeling (SBM) as an efficient method for
characterizing performance across the parameter landscape. Using data
from the RAJA Performance Suite’s computational kernels (RAJAPerf),
we show that SBM outperforms the standard k-Nearest Neighbors (kNN)
model, achieving predictions up to 54% more accurate while requiring
33% less data. Thus, SBM emerges as a powerful tool for enhancing
performance predictions across diverse parameter combinations.

Keywords: Performance analysis · Surrogate-based modeling · Param-
eter tuning · Performance modeling · Magma Library.

1 Introduction

Parameters such as rank count, memory use, and data distribution strategies
influence HPC application performance. These parameters vary widely in value,
each affecting performance differently across diverse hardware platforms, from
CPUs to GPUs and accelerators. Choosing the optimal parameter configuration
is complex due to platform heterogeneity: a setting effective on one platform
might fail on another. This requires extensive parameter sampling to map the
performance landscape. Traditional methods of exploring configuration spaces
involve either exhaustive sampling, which is accurate but computationally ex-
pensive, or local search algorithms (LSAs), which, like grid hill climbing or sim-
ulated annealing, are more efficient yet unpredictable, often converging to local
optima or yielding inconsistent outcomes.

Surrogate-Based Modeling (SBM) [3, 4] offers a compelling alternative to ex-
haustive and local searches. By using limited samples, SBM builds predictive
models to estimate performance landscapes, achieving near-optimal results by
carefully selecting the necessary sampling points. This method can predict opti-
mal configurations not explored during learning, giving it an edge over traditional
LSAs, while efficiently balancing exploration costs and prediction accuracy.

∗Bogale and Lumsden contributed equally to this work.
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To assess SBM’s role in tuning HPC configurations, we analyze the RAJA
Performance Suite (RAJAPerf) [6], featuring microbenchmarks for optimizing
kernels in the RAJA model. RAJAPerf includes varied kernels representing (i)
compute-bound, with high arithmetic intensity, (ii) memory-bound, focusing on
data movement, and (iii) hybrid-bound characteristics. We gather detailed per-
formance data from three key kernels on heterogeneous platforms. By leveraging
SBM, we show that a limited number of samples can effectively map the perfor-
mance landscape, lowering prediction costs compared to full sampling.

2 Capturing Diverse Performance Patterns

The main resource constraints in HPC applications fall into three categories:
compute-bound, memory-bound, and hybrid-bound workloads. RAJAPerf pro-
vides benchmark kernels that demonstrate these constraints in programming
models such as OpenMP, CUDA, HIP, and SYCL, and classifies them accord-
ingly [6]. Compute-bound kernels, such as Basic TRAP INT, are limited by

(a) Basic TRAP INT (b) Basic INIT VIEW1D (c) Stream TRIAD

Fig. 1: Ground truth performance surfaces for compute-bound, memory-bound,
and hybrid-bound kernels on CPU across problem sizes and ranks.

floating-point operations (FLOPs) and benefit significantly from architectures
with powerful compute units. Memory-bound kernels such as Stream TRIAD are
constrained by memory bandwidth and show strong performance gains on sys-
tems with high bandwidth memory (HBM). Hybrid-bound kernels, such as Ba-
sic INIT VIEW1D, require a balance of compute power and memory bandwidth,
benefiting from both high FLOPs and fast memory. We use RAJAPerf to sample
performance across hardware and programming models, generating performance
patterns from one kernel per category. We run our tests using Benchpark [7], a
reproducible benchmarking repository, with performance metrics collected using
Caliper [1] and analyzed using Thicket [2], an open-source Python tool. We eval-
uated the performance on individual nodes of the Lassen system at LLNL, focus-
ing on CPU-based configurations. Using IBM POWER9 CPUs, we vary the MPI
ranks from 2 to 160 and the problem size from 1M to 40M in 1M steps, resulting
in 3,200 unique data points. Figure 1 shows performance surfaces for the three se-
lected kernels: Basic TRAP INT (compute-bound) maintains flat runtimes due
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to negligible memory bottlenecks; Stream TRIAD (memory-bound) shows in-
creasing runtime slopes with problem size; and Basic INIT VIEW1D (hybrid-
bound) displays mixed behavior where runtime increases at large problem sizes
due to memory pressure. Across all kernels, we observe performance cliffs caused
by simultaneous multithreading (SMT) imbalance, especially when MPI ranks
exceed multiples of the 40 physical cores per node. This effect is most pronounced
in Basic TRAP INT, indicating greater sensitivity to SMT contention.

3 Generating Performance Approximations with SBM

Building a surrogate model involves approximating the performance landscape
using a sampled subset of the parameter space. This data fits a functional model
that captures the relationship between parameters and performance. The model
is refined iteratively to improve prediction accuracy while balancing computa-
tional cost and efficiency.

Selecting the Surrogate Model.When building a surrogate model, choos-
ing the functional form to approximate the performance landscape is critical. In
this study, we choose Polynomial Regression due to its balance between ac-
curacy and computational efficiency when modeling the performance landscape
of RAJAPerf kernels.

Constructing the Polynomial Model. We build our SBM by fitting a
polynomial surface to sampled data points using Least Squares Regres-
sion. Consider a scenario with n observed runtimes (data points) corresponding
to different parameter settings. These parameters (e.g., number of ranks, number
of threads per rank, or problem size) act as independent variables and are repre-
sented as vectors x⃗1, . . . , x⃗n. The performance metric, serving as the dependent
variable (e.g., application runtime or I/O bandwidth), is denoted as z1, . . . , zn.
Each data point is modeled by a polynomial function z(x⃗), expressed as:

z(x⃗) = β1 + β2x+ β3y + β4x
2 + β5xy + β6y

2 + · · ·+ βDyd,

where βi are the polynomial coefficients, x⃗ contains the independent variables
(e.g., x, y), and d is the polynomial degree. The total number of monomials is

dm = (d+1)(d+2)
2 . In matrix form, the system is represented as Z = Xβ.

The Least Squares Problem is then solved as: X⊤Z = X⊤Xβ, where
the solution is obtained using the LU Decomposition of the matrix X⊤X.
We use the MAGMA library [5, 8], optimized for dense matrix computations
on heterogeneous architectures. This enables efficient and scalable performance,
effectively allowing the surrogate model to handle large datasets and higher
polynomial degrees.

Model Validation and Selection. We validate our surrogate models using
two key scoring metrics: Mean Squared Error (MSE) and R-squared (R²).
These metrics are the foundation for determining the near-optimal polynomial
degree and number of sampled points required for the k-fold cross-validation
procedure and the ensemble agreement approach upon which our assessment is
based. They ensure the model maintains high accuracy and remains stable across
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application parameter settings. We use k-fold cross-validation with k = 10 to
evaluate the performance of the surrogate model for each degree of polynomial
d and a number of randomly sampled data points representing the performance
measurements of a kernel. These data points are randomly shuffled and divided
into k subsets, each subset serving as the validation set to prevent overfitting.
For each degree d, given a certain number of sample points, we calculate the
MSE and R² values.

We incorporate Ensemble Agreement in our approach to assess the sta-
bility of our models. This technique involves training multiple surrogate models
with slightly different configurations or data subsets and comparing their pre-
dictions. We calculate average MSE and R² to measure the consistency across
different models. Stable metrics (i.e., low standard deviation) are a proxy for high
agreement between models and suggest that the surrogate model can generalize
well across different computing platforms in HPC environments. We assess pre-
diction stability using k-fold cross-validation and ensemble agreement, ensuring
consistent validation and model generalization.

After performing Ensemble Agreement, we use the calculated MSE and
R² to determine the near-optimal degree and number of sampled points. We
select the degree dbest that minimizes the average MSE and maximizes the
average R² as the near-optimal degree for the surrogate model. This process
ensures the model generalizes well across different data subsets and avoids over-
fitting, improving its performance across the application parameter settings (i.e.,
the problem size and ranks). To determine the optimal number of sample points
to train the surrogate model, we use MSE′(x), which is the first derivative
of MSE with respect to the number of sampled points x. This metric measures
the rate of change in MSE with respect to the number of points sampled and
can find the optimal point where the model accuracy improves without overfit-
ting. This derivative tracks how the MSE changes as the number of sampled
points increases. We look for the point where the slope of the MSE curve tran-
sitions from negative to positive. This point represents the optimal number of
sampled points where adding more data points no longer leads to significant
improvements in the model. With the optimal polynomial degree and sample
size, the validated model provides a computationally efficient approach to pre-
dicting performance metrics, significantly reducing the sampling cost.

4 Performance Predictions

Using the data from Section 2 and the methodology in Section 3, we predict the
performance of the RAJAPerf kernels. We determine the near-optimal polyno-
mial degree, identify the near-optimal number of sampled points required, and
compare the performance of SBM with kNN under the same conditions.

Optimal Polynomial Degree Selection Opting for the right polynomial
degree is crucial for accurate SBM performance prediction, aiming to minimize
MSE while maximizing R2. Figure 2 shows the MSE and R2 for SBM using the
Basic TRAP INT kernel on a CPU, examining degrees 1 to 13. Increasing the
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(a) MSE for Basic TRAP INT (b) R2 for Basic TRAP INT

Fig. 2: MSE and R2 for SBM on CPU using full dataset for polynomial degrees
from 1 to 13 for Basic TRAP INT and Stream TRIAD.

degree reduces MSE, indicating better data fit until it levels off around degree
10. Beyond this, further increases offer little error decrease. Higher degrees also
raise R2 values, indicating better variance explanation. For the kernel, R2 ap-
proaches 1 by degree 10, highlighting improved predictive capacity. The findings
underscore that degree 10 offers a balance of complexity and accuracy, while
higher degrees risk overfitting and inconsistent prediction.

Similar MSE and R2 patterns were seen for the Basic INIT VIEW1D and
Stream TRIAD kernels. Table 1 presents average metrics for 100 models with
degrees ranging from 2 to 12. Bold cells indicate the optimal degree’s MSE and
R2 for each kernel. Detailed figures showing the surfaces created by models with
these optimal degrees are not shown due to space constraints, but the main
observations from these figures are as follows. For Basic TRAP INT (CPU) at
degree 10, runtime consistency across problem sizes in the predicted surface re-
flects the kernel’s compute-bound nature, with predictions closely matching the
actual data. For Basic INIT VIEW1D (CPU) at degree 10, the model identifies
the hybrid-bound trend but fails to model sharp transitions due to SMT imbal-
ance. For Stream TRIAD (CPU) at degree 10, as expected, predicted runtime
increases with problem size, accurately reflecting its memory-bound nature in
the degree 10 SBM model.

Figure 3 illustrates the impact of selecting different polynomial degrees than
the optimal degree 10 on the accuracy of the SBM for the Stream TRIAD kernel
on CPU. Figure 3a shows the model with the optimal degree of 10, striking the
right balance between flexibility and generalization. In Figure 3b, the model is
underfitted with a polynomial degree of 5, resulting in an overly simplistic surface
that fails to capture the complex memory-bound behavior of Stream TRIAD.
On the other hand, Figure 3c shows overfitting with a polynomial degree of
13, where the model captures noise and irregularities in the data, leading to
unrealistic fluctuations in the predicted surface. Similar trends were observed in
the other kernels and are not reported because of space constraints.
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Table 1: Average MSE and R2 for SBM degrees ranging from 1 to 13 using all
data points for k-fold. Bold cells indicate the MSE and R2 for the best degree.

Basic TRAP INT
CPU

Basic INIT VIEW1D
CPU

Stream TRIAD
CPU

Degree MSE R2 MSE R2 MSE R2

2 0.1521 0.3907 0.7247 0.4616 0.4045 0.7407

4 0.1128 0.6939 0.5873 0.6932 0.3721 0.8363

6 0.0833 0.8599 0.4304 0.8592 0.2723 0.9253

8 0.0520 0.9335 0.2891 0.9316 0.1837 0.9656

10 0.0443 0.9623 0.2299 0.9613 0.1374 0.9819

12 0.2678 -5.1395 1.3101 -4.988 0.8093 -2.1725

(a) Fit (d=10) (b) Underfit (d=5) (c) Overfit (d=13)

Fig. 3: Overfitting and underfitting on SBM predictions for Stream TRIAD
showing the impact of polynomial degree d on model accuracy.

Near-Optimal Number of Sampled Points. Accurate performance pre-
dictions in HPC applications require efficient sampling strategies to minimize
computational costs while maintaining model accuracy. We measure the deriva-
tives of MSE with respect to the number of sampled points for each kernel’s
optimal SBM degree. We identify the point where the derivative changes sign,
indicating the near-optimal number of sampled points beyond which adding
more points yields a low accuracy gain while increasing the cost of the model
generation. This point represents the number of sampled points where the SBM
accuracy plateaus, signifying no significant improvement in model performance
with additional data.

Across the considered CPU kernels, this optimal number of sampled points is
approximately 2200, which is lower than the original 3200 points used. Figure 4
shows the surfaces generated by SBM using the best degree (10) and the best
number of data points for each kernel (2200). Using the selected degree and
the reduced number of sampled points identified through the MSE derivative
analysis, the predicted surfaces in the figure closely match the patterns observed
in Figure 1, effectively capturing performance trends while significantly reducing
sampling cost.

Comparison with kNN. To evaluate the effectiveness of SBM, it is crucial
to compare it with existing commonly used methods, with k-Nearest Neighbors
(kNN) being a popular choice for performance modeling. We compare SBM’s ca-
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(a) Basic TRAP INT (b) Basic INIT VIEW1D (c) Stream TRIAD

Fig. 4: Predicted surfaces generated by SBM models using the best degree and
the best number of sampled data points for each kernel

Table 2: Performance of the best SBM and kNN models (best value in bold).
Kernel Model Degree k # Pts µ(MSE) σ(MSE) µ(R2) σ(R2)

Stream TRIAD
(CPU)

SBM 10 N/A 2200 0.1453 0.0121 0.9814 0.0046
kNN N/A 3 2700 0.1982 0.1391 0.9415 0.0312

Basic INIT VIEW1D
(CPU)

SBM 10 N/A 2200 0.2403 0.0210 0.9585 0.0167
kNN N/A 3 2700 0.5189 0.4148 0.8900 0.0560

Basic TRAP INT
(CPU)

SBM 10 N/A 2200 0.0465 0.0037 0.9586 0.0186
kNN N/A 3 2700 0.0188 0.0143 0.8874 0.0547

pability to capture kernel patterns with kNN under the same circumstances. We
use the best degree and number of sampled points identified earlier in the paper
for SBM, and, for kNN, we use an optimal k and number of sampled points de-
termined using the validation and selection methodology described in Section 3.
Table 2 shows each kernel’s average and standard deviation of MSE and R2 for
SBM and kNN. These results show that SBM consistently demonstrates better
average accuracy and stability (i.e., lower standard deviation) for more complex
surfaces, such as those observed with CPU kernels, while requiring fewer sam-
pled points. SBM predictions are up to 54% more accurate and require up to
33% fewer sampled points than kNN.

5 Related Work

Diverse strategies for performance modeling are found in the literature, uti-
lizing methods from surrogate-based models to data-driven insights. Travis et
al. [3] optimized MapReduce job settings with polynomial surrogate models. Ma-
chine learning frameworks assist in performance modeling. Scikit-learn provides
multiple regression models. An observation-based black-box method [9] predicts
performance metrics using short partial executions that capitalize on predictable
behavior after startup. Our research extends previous work by employing SBM
on various platforms like CPUs and GPUs, and on different loop-based com-
putational kernels from the RAJA Performance Suite. Our approach improves
scalability over large parameter spaces by integrating polynomial regression with
the MAGMA library via SBM [8, 5].
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6 Conclusions and Future Work

Our SBM approach, which strategically integrates MSE,R2, k-fold cross-validation,
Ensemble Agreement, and MSE′(x), optimizes surrogate models with computa-
tional efficiency and high accuracy. It boosts accuracy by up to 54% and reduces
sampling needs by 33% compared to traditional methods, significantly cutting
sampling costs while ensuring stability and generalization. These advancements
enhance the ability to predict performance across various application parame-
ters, establishing SBM as an essential tool for optimizing HPC configurations.
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