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Abstract. Dynamic Programming (DP) is fundamental to computa-
tional science education and application, traditionally taught through
tabulation methods that emphasize manual loop construction. This pa-
per introduces a modular, systematic plug-and-play framework that greatly
simplifies DP algorithm design and parallelization. Our approach be-
gins with a recursive divide-and-conquer analysis, decomposing DP into
reusable components: Refactored Recursion (RR), OrderSpec, TileSpec,
dp_solve, dp_tile_solve, and dag_run. These modules encapsulate re-
cursive structures and facilitate seamless parallelization via dynamic Di-
rected Acyclic Graph (DAG) scheduling. We demonstrate the versatility
of this framework using three classical textbook problems: Longest Com-
mon Subsequence (LCS) highlights the plug-and-play simplicity, Matrix
Chain Multiplication (MCM) employs transitive reduction for depen-
dency clarity, and the Cut-Rod problem illustrates previously obscured
tiling optimizations and parallel solutions. This new modular paradigm
significantly reduces DP’s learning curve, shifting educational focus from
code-centric methods to intuitive, reusable patterns, bridging theoretical
recursion with practical implementations and greatly enhancing compu-
tational science education.

Keywords: Dynamic Programming · Plug-and-Play Framework · Algo-
rithm Design Patterns · Computer Science Education · Parallelization.

1 Introduction and Motivation

Dynamic programming (DP) solves complex problems by decomposing them
into overlapping subproblems, widely used in optimization and bioinformatics.
However, traditional teaching methods, which emphasize recursion and simple
tabulation, overlook practical requirements for scalability and parallelism. Our
framework addresses these challenges by offering an intuitive, modular approach
that seamlessly integrates recursion with efficient parallelization.

Standard DP education begins with recursion, moves to memoization, and
ends with loop-based tabulation [3]. Yet, deriving efficient loops from recursive
solutions is challenging for beginners and often neglects critical real-world con-
siderations like multi-core parallelism and data-intensive computing.

We introduce a modular framework utilizing OrderSpec for defining traversal
order and tileSpec for parallel execution through dependency graphs (DAGs).
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By converting recursive algorithms into modular components integrated with
automated functions like dp_solve and dp_tile_solve, the approach simplifies
learning. Demonstrated on problems like LCS, MCM, and an extended rod-
cutting example, our approach makes DP accessible and practical.

This paper provides a condensed review of related work (Section 2), details
our DP framework (Section 3), demonstrates examples (Section 4), and concludes
with teaching impacts and future directions(Section 5).

2 Related Work

Dynamic Programming (DP) is a core algorithmic technique for optimization,
bioinformatics, and computational science, often requiring parallelization to man-
age computational costs. Efforts to optimize DP range from compiler-based
transformations to task-based frameworks.

OpenMP is widely used for DP parallelization due to its simplicity [4], of-
fering directives like #pragma omp parallel for concurrency. However, manual
dependency management can be complex for irregular DP structures. Tools like
the Pluto compiler [1] and LLVM Polly [13] automate parallel code generation
for affine loops, enhancing locality and parallelism. Task-based frameworks, such
as Taskflow [7] and Dask [12], dynamically infer dependencies, offering flexibility
but requiring task decomposition. Recent work by Maleki et al. [10] parallelizes
DP via rank convergence, enabling concurrent computation of dependent stages
for algorithms like Needleman-Wunsch, achieving notable speedups.

Graph-based methods capture DP dependencies effectively. Algebraic Dy-
namic Programming (ADP) [6] abstracts state traversal and scoring, aiding
bioinformatics tasks like sequence alignment. Petri nets model dependencies as
token transitions [5], automating scheduling but adding overhead.

Hardware optimizations include GenDP [8] for genome sequencing and DP-
HLS [2] for high-level synthesis in bioinformatics. These improve efficiency but
demand specialized expertise.

DP is critical in bioinformatics for sequence alignment [11] and RNA struc-
ture prediction [14], and physics simulation-based experiments [9], all of which
demonstrates the need for efficient and parallel implementations for large-scale
problems.

This paper presents a systematic approach to transform recursive DP solu-
tions into parallel implementations via recursion, dependency analysis, tabula-
tion, tiling, and parallelism, making DP a plug & play component once recursion
is defined.

3 DP Algorithmic Framework

Dynamic Programming (DP) algorithms systematically solve optimization prob-
lems by filling tables using nested loops, exploiting subproblem dependencies.
Classic examples such as CutRod, Matrix Chain Multiplication (MCM), Longest
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Common Subsequence (LCS), and Optimal Binary Search Tree (BST) showcase
diverse traversal patterns (Figure 1).

DP Problem Dimension Start Loc End Loc Ordering Filter(i,j)
CutRod 1D 0 n row-major True
MCM 2D (n,1) (1,n) wavefront/row-major i ≤ j
LCS 2D (1,1) (m,n) grid/row-major True

Optimal BST 2D (n-1,0) (0,n-1) wavefront/row-major i ≤ j

Fig. 1. Traversal patterns from MIT textbook [3]

Figure 1 summarizes traversal dimensions, start and end locations, traversal
ordering, and filtering conditions.

To formalize DP tabulation, our framework in Figure 2 introduces Python
classes: OrderSpec2D and TileSpec2D. OrderSpec2D defines traversal order through
starting/ending coordinates, wavefront preference, row-major selection, and cell
filtering conditions (e.g., λi, j : i ≤ j). Its gen method generates sequences of
cell indices, replacing traditional nested loops.

class RRO:
def prep(self): return
def fill(self,i,j):

return
def result(self): return

class OrderSpec2D:
def __init__(self,

start, end,
waveFront=False,
rowMajor=True,
Filter=labmda i,j:True):
...

def gen(): ...
class TileSpec2D:

def __init__(self,
start,end,tileHeight,
tileWidth): ...

def gen(): ...

def dp_solve(rro, orderSpec):
rro.prep()
for i,j in orderSpec.seqGen():

rro.fill(i,j)
return rro.result()

def dp_tilie_solve(rro,tileSpec,inTileOrder):
rro.prep()
for tileId,(x0,y0),(x1,y1) in \

tileSpec.gen():
inTileOrder.start = (x0,y0)
inTileOrder.end = (x1,y1)
for i,j in inTileOrder.gen():

rro.fill(i,j)
return rro.result()

def dag_run(rro, tileSpec,
inTileOrder, tileSchedule):

rro.prep()
... # e.g. setup and run dask
return rro.result()

Fig. 2. DP Algortihmic Framework Library
The dp_solve function encapsulates sequential computation, accepting an

OrderSpec2D instance and a Refactored Recursion Object (RRO). The RRO
modularizes recursion into preparation (prep), cell computation (fill), and re-
sult extraction (result). Thus, DP algorithm design becomes a straightforward
process: creating RRO and OrderSpec2D instances.

For parallel computation, we introduce the TileSpec2D class, defining traver-
sal tiles with specific coordinates, tile dimensions, and unique identifiers (tileID).
The dp_tile_solve function iterates over tiles sequentially, applying OrderSpec2D
within each tile for correctness.
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Parallel execution is achieved through directed acyclic graph (DAG) schedul-
ing, explicitly modeling tile-level dependencies beyond loop boundaries, enhanc-
ing flexibility over approaches like OpenMP. We utilize existing DAG schedulers
such as Dask[12] (Python) or Taskflow[7] (C++), conceptualized in the dag_run
function. dag_run combines tile dependency data (tileDep), traversal specifica-
tions, and RROs, generating executable task DAGs.

Our framework simplifies DP algorithm design and parallelization into defin-
ing modular RROs, OrderSpec2D, and TileSpec2D. This paper demonstrates
these steps through examples: LCS (2D grid), MCM (wavefront with i ≤ j), and
CutRod (1D to 2D lifted parallel traversal).

4 Case Studies

4.1 Longest Common Subsequence (LCS)

The LCS problem is a standard example of 2D dynamic programming (DP).
Given two strings X and Y , the goal is to find the length of their longest com-
mon subsequence. The recursive formulation is given in Equation (1), with a
corresponding Python implementation shown in Figure 3. Calling LCS(X, Y,
0, 0) returns the correct result.

LCS(i, j) =

{
1 + LCS(i+ 1, j + 1), if X[i] = Y [j]

max(LCS(i, j + 1), LCS(i+ 1, j)), otherwise
(1)

def LCS(X, Y, i, j):
if i >= len(X): return 0
if j >= len(Y): return 0
if X[i]==Y[j]:

return LCS(X,Y,i+1,j+1)
else:

return max(LCS(X,Y,i+1,j),
LCS(X,Y,i,j+1))

Fig. 3. LCS Recursive Formulation

def lcs_dep(X, Y, i, j):
if i>= len(X): return
if j>= len(Y): return
gen_edge((i,j), (i+1,j))
gen_edge((i,j), (i,j+1))
gen_edge((i,j), (i+1,j+1))
lcs_dep(X,Y,i+1,j)
lcs_dep(X,Y,i,j+1)
lcs_dep(X,Y,i+1,j+1)

Fig. 4. LCS Dependency Graph Generator

With a small modification (Figure 4), we generate the LCS dependency
graph, where each node corresponds to (i,j) in the DP table, and edges repre-
sent dependencies on LCS(i+1,j+1), LCS(i+1,j), and LCS(i,j+1).

Figure 5 shows a dependency graph for len(X) = 5 and len(Y) = 4. This
informs the OrderSpec2D definition (Figure 6) used in our dp_solve frame-
work. The RRO encapsulation appears in Figure 7, and tiling configuration with
dp_tile_solve is shown in Figure 8.

All four configurations of tabulation orders (combinations of wavefront/grid
and row-/column-major) are valid and verifiable within the framework. For tiled
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Fig. 5. Dependency Graph

# instantiate the LC problem
lcs = LCS_RR("...", "...")
# define ordering
orderSpec = OrderSpec2D(

start = (lcs.m, lcs.n)
end = (0,0),
RowMajor=True,
WaveFront = False )

# solve
r = dp_solve(lcs, orderSpec)

Fig. 6. LCS OrderSpec2D Usage

DP, combining 4 inter-tile and 4 in-tile orders yields 16 configurations. Including
forward/backward traversal, a total of 32 valid orderings can compute LCS.

This variety highlights the flexibility of our framework in validating diverse
traversal strategies.

import numpy as np
class LCS_RR(RRO):

def __init__(self, X,Y):
self.X,self.Y = X,Y
self.m, self.n = len(X),len(Y)

def prep(self): self.dp = \
np.zeros((self.m+1, self.n+1))

def fill(self, i, j):
if self.X[i] == self.Y[i]:

self.dp[i][j] = ...
else:

self.dp[i][j] = max(...)
def result(self):

return self.dp[0][0]

Fig. 7. LCS RRO Encapsulation

rr = LCS_RR(...)
tileSpec = TileSpec(

tileHeight = ...,
tileWidth = ... ,
tileOrder = OrderSpec(

start=(rr.m,rr.n),
end=(0,0),
RowMajor=True,
WaveFront = False) )

inTileOrder = OrderSpec(
start=None, end=None,
RowMajor=False,WaveFront=True)

r = dp_tile_solve(rr,tileSpec,
inTileOrder)

Fig. 8. LCS Tiling Configuration

4.2 MCM with Transitive Reduction

Matrix Chain Multiplication (MCM) is a classic dynamic programming opti-
mization problem. Its recursive formulation is:

m(i, j) =

{
0, if i = j

minj−1
k=i(m(i, k) +m(k + 1, j) + pi−1 · pk · pj), if i < j

(2)

From this, we generate a dependency graph, shown in Figure 9.
The graph contains redundant edges (e.g., A → C if A → B → C exists).

Transitive reduction removes these, simplifying Figure 9 to Figure 10. This re-
duced graph clarifies start/end locations per Table 1, enabling an RRO instance
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[0][0] [0][1] [0][2] [0][3] [0][4]

[1][1] [1][2] [1][3] [1][4]

[2][2] [2][3] [2][4]

[3][3] [3][4]
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Fig. 9. Raw MCM Dependency Graph

[0][0] [0][1] [0][2] [0][3] [0][4]

[1][1] [1][2] [1][3] [1][4]

[2][2] [2][3] [2][4]

[3][3] [3][4]

[4][4]

Fig. 10. Reduced Dependency Graph

for the DP framework, like LCS. We set OrderSpec2D with Filter = lambda
i,j: i<=j to traverse the upper triangular table. Unlike textbook [3] wavefront
ordering, all four OrderSpec2D configurations are valid, requiring no middle-
diagonal start.

4.3 Case Study CutRod

The Rod Cutting problem is a classic dynamic programming optimization task.
Its recursive formulation is:

R(n) =

{
0, if n = 0,

max1≤i≤n (p[i] +R(n− i)) , if n > 0.
(3)

We generate a dependency graph (Figure 11), simplified via transitive reduc-
tion to Figure 12.

[0] [1] [2] [3] [4]

Fig. 11. Raw Dependency Graph

[0] [1] [2] [3] [4]

Fig. 12. Transitive Reduced Graph

A 1D DP implementation is shown in Figure 13. Viewing r as a 2D array,
each iteration computes r[i][j], with r[i] as max(r[i][:i]). This leads to a
2D version in Figure 14. The 2D version’s dependency graph (Figure 15, n=5) is
generated by instrumenting loops, unlike LCS and MCM.

This graph shows non-neighboring dependencies (e.g., (0,0) to (5,0)). Grid
or wavefront ordering from (0,0) satisfies these, but irregular dependencies chal-
lenge OpenMP. Our DAG-based scheduling framework enables plug-and-play
multicore execution, as shown with LCS and MCM.

An additional optimization is that the 2D array can revert to 1D by using
Figure 13’s line 5, optimizing memory while preserving correctness, since the
max operator is communicative, associative, and monotonic.
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1 def cutrod(P, n):
2 r = [0] * (n+1)
3 for i in range(n+1):
4 for j in in range(i):
5 r[i] = max(r[i],
6 r[j]+P[i-j])
7 return r[n]

Fig. 13. CutRod DP Algorithm

1 import numpy as np
2 def cutrod_dp_2d(P, n):
3 r = np.zeros((n+1, n+1))
4 for i in range(1, n+1):
5 for j in range(i):
6 r[i][j] = max(
7 r[j][j], r[j][j]+P[i-j])
8 r[i][i]=max([r[i][:i]])
9 return r[n][n]

Fig. 14. CutRod DP Algorithm in 2D

0,0

1,0 1,1

2,0 2,1 2,2

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3 4,4

5,0 5,1 5,2 5,3 5,4 5,5

Fig. 15. Dependency Graph for Figure 14

5 Conclusion and Future Work

We presented a modular framework for dynamic programming (DP) that begins
from recursion, captures dependencies explicitly, and transitions naturally into
sequential and parallel implementations. Instead of teaching loop-centric DP
from the outset, our approach advocates starting from the recursive formulation,
generating the dependency graph, and using that to drive tabulation order and
parallelism.

This method reshapes how DP is taught: students gain intuition by vi-
sualizing dependencies, then implement sequence generators as modular pro-
gramming exercises. They no longer struggle to derive nested loops from recur-
rences—instead, they construct and test different tabulation strategies and plug
them into a reusable library.

Beyond education, this framework bridges theory and practice by support-
ing task-based parallelization through DAG schedulers like Dask or Taskflow.
It scales to real-world workloads while remaining accessible for students and
researchers.

Future directions include classroom deployment with visualization tools, in-
tegrating tiled DP with GPU or distributed execution, and extending the frame-
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work to support more complex problems like irregular and higher-dimensional
DP, which are common in computational science and engineering.
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