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Abstract. The Multi-Objective Shortest Path (MOSP) problem gen-
eralizes the classic shortest path problem by simultaneously optimizing
multiple, often conflicting, cost functions. Recent advances in MOSP
have yielded algorithms that employ sophisticated heuristic-based tech-
niques and dimensionality reduction to expedite search. However, most
existing methods rely on strictly sequential frameworks, leaving paral-
lelized approaches relatively underexplored - especially for high-dimensional
objectives. In this paper, we introduce SOPMOA* (Shared-Open Paral-
lelized Multi-Objective A*), an algorithm that addresses this gap by en-
abling any number of concurrent sub-searchers to cooperate via a shared-
memory priority queue. Each sub-searcher independently processes la-
bels, performs dominance checks against locally stored partial Pareto
fronts, and contributes to a global frontier of non-dominated solutions.
We propose mechanisms for safe and efficient updates to shared data
structures, ensuring correctness without excessive locking overhead. Em-
pirical evaluations on benchmark multi-objective road networks demon-
strate that SOPMOA* scales favorably with increasing parallelism and
consistently outperforms state-of-the-art algorithms such as EMOA*,
LTMOA*, and NWMOA* in both speed and robustness. These results
underscore the substantial potential of shared-memory parallelization in
tackling challenging multi-objective pathfinding tasks.

Keywords: Multi-Objective Shortest Path (MOSP) · Parallel A* Search
· Shared-Memory Parallelism · Heuristic Search · Concurrent Algorithms
· Multi-Objective Optimization.

1 Introduction

1.1 Problem Definition

Consider a directed graph G = ⟨V,E, c⟩, where V is a finite vertex set, E is the
set of directed edges (u, v) with u ̸= v, and c : E → Rd

≥0 is a non-negative cost
function with d attributes. A path p is a sequence of vertices vi (i ∈ 1..n) such
that (vi, vi+1) ∈ E. The total cost of p is c(p) =

∑n−1
i=1 c(vi, vi+1).
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A cost vector α weakly dominates β (α ⪯ β) if αi ≤ βi for all i; α dominates
β (α ≺ β) if α ⪯ β and α ̸= β. If neither dominates the other, they are mutually
undominated. The vector α is lexicographically smaller than β (α <lex β), if the
first k indices i ∈ 1..k satisfy αi = βi, and at index k + 1, αk+1 < βk+1. The
truncated version of α ∈ Rd, denoted Tr(α), is the (d − 1)-dimensional vector
obtained by removing its first component (i.e., α from the second to last index).

In a search problem with start node s and target t, a heuristic h : V → Rd
≥0

estimates the cost from a node to t. In the scope of this paper, h is consistent
and admissible in each cost attribute. A path psv from s to t is represented by a
label l with node(l) = v, g(l) = c(psv), and f(l) = g(l) + h(v). The Pareto front
Pv at node v is the set of mutually undominated labels among all paths from
s to v. The Multi-Objective Shortest Path (MOSP) problem seeks the Pareto
front Pt at the target node, representing all optimal trade-off solutions.

1.2 Algorithmic Background

In recent years, the Multi-Objective Shortest Path (MOSP) problem has at-
tracted increasing attention in network optimization. Heuristic search methods
for obtaining the full Pareto set utilize a priority queue of labels: each iteration
pops the most promising label, applies a “dominance check” against expanded
non-dominated labels, expands and generates successors if qualified. The algo-
rithms terminate when the queue is empty.

The concept of “dimensionality reduction”, introduced in NAMOA*dr [8], de-
creases the size of the non-dominated set, significantly reducing the dominance-check
runtime. NAMOA*dr’s Eager Check maintains mutually non-dominated labels
per node in OPEN , guaranteeing that popped labels are already Pareto-optimal,
but incurs overhead removing dominated intermediates and re-structuring queue,
which reduces queue efficiency. By contrast, LTMOA* [6] and EMOA* [9] employ
Lazy Check: OPEN may hold dominated labels from the same node, so each
popped label must be checked against the Pareto front before expansion. Both
share the same framework and utilize dimensionality reduction; EMOA* stores
the truncated front in an AVL tree, while LTMOA* uses a linear list or array.
NWMOA* [2], originally for negative-weight graphs, also excels on non-negative
graphs by using a bucket priority queue, obviating strict lexicographical order,
adopting alternative dominance and frontier-update strategies.

Parallelism in MOSP remains under-explored: early parallel algorithms (e.g.
[10, 7]) are often complex or yield modest gains. BOBA* [3] introduces a bi-objective
bidirectional search - one forward from the start, one backward from the target -
each prioritizing a different objective. Extending this to d objectives, [1] assigns
up to d workers to cyclic permutations of objectives, each exploring a distinct
region of the Pareto front, though parallelism remains bounded by d. Other ap-
proaches, such as BDA [11] and MDA [4], parallelize subtasks like dominance
checks and OPEN updates. T-MDA [5] further incorporates BOBA*-style bidi-
rectionality for bi-objective search.
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Algorithm 1: SOPMOA* High-level
Input: graph G ⟨V,E, c⟩, heuristic h, start s, target t, num. workers N
Output: Complete Pareto optimal solutions Pt

1 OPEN ← ∅; Sols← ∅; Gcl[v]← ∅,∀v ∈ V ; active[i]← true,∀i ∈ 1..N ;
2 Initialize start_label of node s; g(start_label)← −→0 ; f(start_label)← h(s);
3 Push start_label to OPEN ;
4 for id← 1 to N do in parallel SubSeacher(id);
5 Remove dominated solutions from Sols;
6 return Sols;

2 Shared-Open Parallelized Multi-Objective A*

This section introduces the Shared-Open Parallelized Multi-Objective A* (SOP-
MOA*) algorithm. The algorithm begins by initializing shared-memory compo-
nents:

– Priority queue OPEN : A priority queue storing generated labels in lexico-
graphically ascending f values order.

– List of Pareto fronts Gcl: Stores cost vectors g of expanded labels belonging to
the truncated Pareto fronts of each node. Lexicographical order is maintained
on full form of the costs, while dominance checks and frontier update use
dimensionality reduction.

– Solution set Sols: Stores qualified labels of target node t, used as algorithm’s
output.

– Array active: Tracks worker status using boolean values, enabling workers
to update their own status and monitor others.

A start label is inserted into OPEN , then SOPMOA* creates N parallel
workers with each act as a sub-searcher (Algorithm 1). These sub-searchers share
the workload by simultaneously take labels from OPEN and expand the labels
to the shared search tree (represented by Gcl). A sub-searcher of SOPMOA*
follows the baseline of multi-objective search framework, is shown in Algorithm
2.

The notable difference of SOPMOA* sub-searchers from other algorithms
is that they utilize memory-locking mechanism for managing shared attributes.
When a sub-searcher detects that OPEN is empty, it does not terminate but
instead monitors the status of other sub-searchers, anticipating new labels gen-
erated by others. The terminate condition is met when all workers are inactive,
indicating that no new label will be generated and the OPEN set is truly empty.

In this parallelism setting, labels may not be processed in strict lexicographi-
cal order, unlike in synchronized algorithms. To handle potential dimensionality
reduction dominance check issues, we use specialized frontier check and update
procedures:

– Frontier Check: Given a node v, label x, or target node t with cost vec-
tor α (i.e., g(x) or f(x)), the frontier check compares α against the Pareto
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Algorithm 2: Sub-Searcher
Input: Sub-searcher’s index ID

1 while ∃i ∈ 1..N : active[i] = true do
2 lock OPEN do
3 if OPEN is empty then
4 active[ID]← false;
5 continue;
6 else
7 Pop label x on top of OPEN ;
8 active[ID]← true;

9 if FC(node(x), g(x)) or FC(target, f(x)) then continue;
10 FUpdate(node(x), g(x));
11 if node(x) = target then
12 lock Sols do Add label x to Sols;
13 continue;

14 for succ ∈ successors(node(x)) do
15 Create new label y of node succ;
16 g(y)← g(x) + c(node(x), succ); f(y)← g(y) + h(succ);
17 if FC(succ, g(y)) or FC(target, f(y)) then continue;
18 lock OPEN do Push y to OPEN ;

front Gcl[v]. A snapshot of Gcl[v] is taken under a shared-lock allowing con-
current reads but blocking updates. Vectors lexicographically larger than α
are excluded, while dominance is checked on the truncated vectors of those
lexicographically smaller than or equal to α, as in the synchronized version.

– Frontier Update: If a label is undominated by both frontiers, its α = g(x)
is inserted into Gcl[v] under an exclusive lock. Before insertion, any vector
with a truncated version dominated by α is removed. α is then placed to
maintain lexicographical order.

Though true Pareto optimal labels cannot be falsely discarded, false Pareto
labels, which do not belong to the Pareto front, can still be retained due to
non-monotonic expansion order. These labels are not large in number and are
suboptimal because they have to qualify the frontier check beforehand. This
abundance does not affect the overall result, as will be proven in Lemma 4.

In the end, previously expanded false Pareto labels are removed from Sols.
The algorithm returns the complete set of Pareto optimal solutions.

3 Theoretical Results

Lemma 1. Let cost vector α be lexicographically smaller than cost vector β.
Then, α is not dominated by β.

Proof. If β dominates α, then ∀i ∈ 1..d : βi ≤ αi. Since α <lex β, there exists at
least one index j such that αj < βj , implying that α is not dominated by β.
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Algorithm 3: Frontier Check (FC)
Input: a node v, a cost vector α
Output: true if α is dominated by any of Gcl[v], else false

1 shared-lock Gcl at node v do X ← copy(Gcl[v]);
2 for iub ← |X| down to 0 do
3 if iub > 0 and X[iub] ≺lex α then break;

4 for j ← 1 to iub do // no loop if iub = 0
5 if Tr(X[j]) ⪯ Tr(α) then return true;

6 return false;

Algorithm 4: Frontier Update (FUpdate)
Input: a node v, a cost vector α

1 lock Gcl at node v do
2 for i← 1 to |Gcl[v]| do
3 if Tr(α) ≺ Tr(Gcl[v][i]) then Delete at index i of Gcl[v];

4 for iins ← |Gcl[v]| down to 0 do
5 if iins > 0 and Gcl[v][iins] ≺lex α then break;

6 Insert α to Gcl[v] at index (iins + 1);

Lemma 2. Let cost vector α lexicographically smaller than cost vector β, then,
α weakly dominates β iff Tr(α) weakly dominates Tr(β).

Proof. α <lex β implies that α1 ≤ β1. For α ⪯ β, all α1 ≤ β1, α2 ≤ β2, α3 ≤ β3,
. . . , αd ≤ βd must be satisfied. Since the first inequality is already met, it must
hold α2 ≤ β2, α3 ≤ β3, . . . , αd ≤ βd, equivalent to Tr(α) ⪯ Tr(β).

Lemma 3. The procedure using dimensionality reduction in SOPMOA* fron-
tier check without lexicographical-ordering guarantee, returns accurate result (i.e.
equivalent to the frontier check on full-form vectors).

Proof. Let α be the cost and X the Pareto front, partitioned as X = X≤α∪X>α,
where X≤α contains labels lexicographically non-larger than α, and X>α the
rest. The labels in X>α cannot dominate α from Lemma 1, thus are discarded
from frontier check. A label in X≤α can be equal to α, which truncated form
weakly dominates Tr(α). Otherwise, the truncated comparisons are valid when
the labels are truly lexicographically smaller than α (proved in Lemma 2).

Lemma 4. A true Pareto label will not be discarded in frontier check by the
false labels in the Pareto front.

Proof. Let α be the cost and X the Pareto front, partitioned as X = X≤α ∪
X>α, where X≤α contains labels lexicographically non-larger α, and X>α the
rest. False labels in X>α are excluded from comparisons with α. Otherwise,
considering a false label β ∈ X≤α, it must hold that Tr(β) ⪯̸ Tr(α). Since α is
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of the Pareto front while β is not, α either dominates β (ruled out by Lemma
1) or is mutually undominated with β and α ̸= β. In the latter case and α ̸= β,
there exists indices i and j that αi < βi and αj > βj . Since β <lex α, in the
first k (k ≥ 1) indices, α is no smaller than β, forcing i > k (hence i > 1). Thus
Tr(β) ⪯̸ Tr(α), and no false label β can affect α.

Corollary 1. The pareto optimal labels will always be expanded (will not be
discard in dominance check).

Theorem 1. SOPMOA* computes cost-unique complete pareto optimal solu-
tions.

Proof. SOPMOA* employs N parallel sub-searchers following the same multi-
objective search framework. The process of frontier check in each sub-searchers
is guaranteed to be accurate (Lemma 3) and will not discard true Pareto labels
of every node (Lemma 4). Consequently, all true Pareto labels are expanded in
frontier updates (sequentially at each node, avoiding conflicts) and generate their
successors. This ensures the exploration of all optimal labels in the complete
search tree, including the target’s Pareto front. However, false Pareto labels
are also expanded due to non-monotonic lexicographical order, this only creates
abundant branches to the search tree, not affecting the result. Those of the target
node will be stripped after the parallelized process, thus SOPMOA* returns
complete pareto optimal solutions.

4 Experimental Results

In this section, we evaluate SOPMOA* via two experiments. First, we vary the
number of workers to assess how performance scales with parallelism. Second,
we compare SOPMOA*’s best and worst configurations against state-of-the-art
algorithms EMOA* [9], LTMOA* [6], and NWMOA* [2].

All algorithms were implemented in C++ using standard libraries. SOP-
MOA* employs OpenMP with std::mutex and std::shared_mutex, and In-
tel TBB’s concurrent_priority_queue for OPEN . EMOA*, LTMOA*, and
NWMOA* (with bucket PQ) were re-implemented; LTMOA*’s array-Gcl version
was omitted due to unstable memory handling. Experiments ran on a 24-core
Intel Xeon Gold 6242R (3.10 GHz, 32 GB RAM) with a 3600s timeout.

Benchmarks use the DIMACS New York map with two base objectives (dis-
tance, time), extended to four by adding economic cost, random integers in
[1,100]. Heuristics derive from d backward Dijkstra one-to-all searches and are
excluded from reported runtimes.

Experiment 1: SOPMOA* was run with 4, 8, 12, 16, and 20 workers on
50 random start–target pairs. Table 1 shows average runtime, generated nodes,
and expanded nodes. Runtime drops sharply from 4 to 8 workers (≈113s), then
tapers (only 23s from 16 to 20). Generated and expanded labels rise slightly,
likely due to parallelism-induced extraction disorder. Overall, SOPMOA* bene-
fits substantially from increased parallelism.
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50 random NY instances (3 objectives) - avg. solutions ≈ 8930
SOPMOA* avg. runtime (s) avg. generated avg. expanded
4 workers 521.231 11 908 051 9 517 206
8 workers 408.084 11 915 313 9 519 256

12 workers 334.939 11 920 603 9 520 361
16 workers 274.189 11 922 836 9 520 568
20 workers 250.243 11 923 698 9 521 368

Table 1. The average runtimes, the average number of generated labels, the average
number of expanded labels on 100 random NY instance with 3 objectives, run by five
configurations of SOPMOA* (4, 8, 12, 16, 20 workers)

Algorithms Solved Runtime (s)
Min Max Mean Median

100 random NY instances (3 objectives) - avg. solutions ≈ 10220
EMOA* 100/100 0.209 1896.45 357.84 58.36
LTMOA* 99/100 0.313 3600.00 823.95 158.38
LazyLTMOA* 100/100 0.273 3528.92 690.43 131.18
NWMOA* 100/100 0.234 3456.15 553.50 102.41
SOPMOA* - 4 workers 100/100 0.311 3024.69 563.13 97.60
SOPMOA* - 20 workers 100/100 0.257 1730.34 248.58 51.83
50 random NY instances (4 objectives) - avg. solutions ≈ 16866
EMOA* 38/50 0.507 3600.00 1344.37 852.71
LazyLTMOA* 33/50 0.896 3600.00 1766.10 1804.97
NWMOA* 37/50 0.579 3600.00 1398.89 980.76
SOPMOA* - 20 workers 46/50 0.768 3600.00 1096.97 649.82

Table 2. The number of solved instances and the runtime statistics on 100 instances
with 3 objectives and 50 instances with 4 objectives, run by EMOA*, LTMOA*,
LazyLTMOA*, NWMOA* and two versions of SOPMOA* (4 and 20 workers)

Experiment 2: We compared SOPMOA* (4- and 20-worker setups) to
EMOA*, LTMOA*, LazyLTMOA*, and NWMOA* on 100 random 3-objective
instances. LTMOA* failed one instance; all others solved all 100. The 20-thread
SOPMOA* is ≈1.5× faster than EMOA* and more than 3× faster than LT-
MOA*, while 4-worker SOPMOA* matches NWMOA*. On 50 4-objective in-
stances, 20-thread SOPMOA* solved 46/50 and maintained superior runtimes,
though its minimum runtime is higher due to multithreading overhead.

These results confirm that SOPMOA* achieves superior speed and consis-
tency, underscoring the critical role of parallelization in multi-objective search.

5 Conclusions

In conclusion, we introduced SOPMOA*, a novel parallel MOSP algorithm
that delivers complete Pareto optimal solutions via multiple simultaneous sub-
searchers on a shared priority queue. It features unique strategies for expanded
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Pareto fronts, dominance checking, and frontier updating, and in its early de-
velopment has shown substantial improvements over state-of-the-art algorithms,
highlighting its potential to significantly enhance performance and leverage par-
allelism in MOSP.
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