
Algorithm Selection in Short-Range Molecular
Dynamics Simulations

Samuel James Newcome1[0000−0003−3044−6057], Fabio Alexander
Gratl1[0000−0001−5195−7919], Manuel Lerchner1[0000−0002−5167−465X], Abdulkadir
Pazar1[0009−0005−9035−6821], Manish Kumar Mishra1[0000−0002−5919−3260], and

Hans-Joachim Bungartz1[0000−0002−0171−0712]

Chair of Scientific Computing in Computer Science, Department of Computer
Science, Technical University of Munich, Boltzmannstr. 3, 85748, Garching bei

Muenchen, Germany samuel.newcome@tum.de

Abstract. Recent works have highlighted the advantages of algorithm
selection to optimise scientific simulations, presenting a range of ap-
proaches from classical time-series prediction, to expert-guided, to data-
driven. In this work, we present novel variations upon these approaches
for Molecular Dynamics simulations, implemented in the algorithm se-
lection particle simulation library AutoPas, and compare them in terms
of both performance and practicality. We demonstrate that these ap-
proaches can achieve speedups of up to 1.25 compared to an optimal
single algorithm without dynamic algorithm selection.
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1 Introduction

Molecular Dynamics (MD) simulations are an important technology with appli-
cations including thermodynamics [8] and bio-membrane simulation [5]. Molecules
are simulated as point bodies moving according to Newton’s equations of mo-
tion, propagated with some numerical integrator. This results in a large number
of timesteps, each typically computationally dominated by inter-particle force
calculations, and between them the distribution of particles changes only mini-
mally. Where the forces are short-ranged, a common optimisation is to introduce
a cutoff distance beyond which the forces are neglected. Simulations with this op-
timisation are well studied, resulting in the development of numerous algorithms
and parallelisations, however no algorithmic configuration (AC) is optimal in all
scenarios [2] and the relative performance of these ACs can vary on different
hardware or with different force models [7].

Such findings motivate the development of the algorithm selection and tuning
library AutoPas1, which aims to select the optimal from a large range of ACs
[2]. However, prior works [2] [10] [7] have utilised only naive selection strategies

1 https://github.com/AutoPas/AutoPas
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which involve significant time spent trialling suboptimal ACs, which can perform
orders of magnitude worse than the optimal.

In this work, we present and compare three methods that aim to avoid this.
The Predictive strategy uses past time series data of an AC’s performance to
predict how it will perform in the future. The Expert strategy uses expert-
written rules to determine in which scenarios an AC should be trialled. The
Random Forest strategy uses a random forest trained on pre-collected data,
which maps scenario-dependent metrics to optimal ACs. We discuss the practi-
calities of these methods as well as their performance in three varied simulation
scenarios.

2 AutoPas

AutoPas is designed to provide a black-box particle container to the developer of
an arbitrary cutoff-based particle simulator. It contains a variety of algorithms
and parallelisations which combine to form an AC for efficiently calculating the
forces on each particle. AutoPas aims to dynamically select the optimal of these
ACs over the course of the simulation, as well as tune them. As the focus of
this work is on the selection strategies, we will not discuss the different ACs
themselves. For such a discussion, the reader is referred to Gratl et al. [2] and
Gratl-Gaßner [3]. Overall, a total of 116 possible ACs will be used in this work.

As AutoPas primarily handles shared memory parallelism, distributed mem-
ory parallelism is intended to be implemented by the simulator developer. Seckler
et al. [10] proposes decomposing the domain into a number of subdomains and
assigning each an MPI rank with its own AutoPas container. The consequence
of this is that different subdomains can use different ACs [10].

AutoPas’ algorithm selection consists of a series of tuning phases that occur
in regular intervals. During each tuning phase, all ACs are trialled for a small
number of iterations and the average is taken. The AC with the smallest average
is then used until the following tuning phase. Naively trialling all ACs is referred
to as a Full Search. Selection Strategies, such as those presented in Section 5,
are intended to reduce the number of ACs trialled [3].

3 Related Work

Armstrong et al. [1] investigated a very similar dynamic algorithm selection
problem also applied to short-range particle simulations, using a temporal dif-
ference reinforcement learning agent and a linear regression model to predict the
optimal algorithm out of two.

Mohammed et al. [6] investigated the dynamic selection of OpenMP load-
scheduling algorithms out of a range of twelve algorithms. They considered ran-
dom search, exhaustive search, and expert search methods. The expert search
method takes relevant measurements and applies them to expert-written Fuzzy
Logic systems, which can result in changes to the algorithm.
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Stylianou and Weiland [11] investigated the selection of one of six different
sparse matrix storage formats using a decision tree and random forest. Unlike the
previously discussed works, they considered independent matrices rather than a
problem that evolves over time and, as such, their selection methods are solely
based on features from the matrices.

The first work is similar to the Predictive strategy, and the latter two serve as
inspiration for an Expert and a Random Forest strategy; however, the ideas must
be non-trivially redeveloped into a form that is applicable to AutoPas. Unlike
all of the above works, we will consider a much larger number of algorithms.

4 Live Simulation Statistics

In order to implement expert knowledge or data-driven approaches, as discussed
previously, statistics need to be extracted from the simulation, from which deci-
sions on the optimality of ACs can be made. We consider a simple yet compu-
tationally efficient scheme in which particles are binned into small cells, and the
mean, standard deviation, median, and maximum numbers of particles per cell
are collected. Furthermore, we also gather statistics on the number of bins, how
many of these are empty, the number of OpenMP threads, and the skin2.

5 AutoPas’ Selection Strategies

In this section, we will describe three novel dynamic algorithm selection methods
for AutoPas: the Predictive, Expert, and Random Forest methods. For a
deeper discussion of the implementation of the methods, see Gratl-Gaßner [3],
Lerchner [4], and Pazar [9] respectively. For details on the exact live simulation
statistics used, model parameters, rules, and training data, see the repository
mentioned in the Appendix.

5.1 The Predictive Strategy

In the predictive strategy, each AC is trialled during the first two tuning phases.
After this, at the start of each following tuning phase, a linear model for each AC
fitted to the last two data points for that AC, is used to predict the performance
of that AC in that tuning phase. Only the ACs expected to perform within a
relative threshold of the expected optimum are trialled.

To avoid ACs that previously performed poorly, never being trialled again,
even if the simulation has changed significantly, we retrial ACs after a number
of tuning phases where they have not been trialled, even if they are expected to
perform worse than the threshold. On the other hand, a blacklist is applied to
extremely poor-performing ACs, and they are never retrialled.

The predictive tuning strategy’s simplicity is a clear benefit compared to later
methods. No data is required outside of the data generated within the simulation
itself, and, to a degree, no expert knowledge is required to use it.
2 See Gratl et al. [2]
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5.2 The Expert Strategy

A fuzzy-logic-based system was designed to map the simulation statistics using
expert-written fuzzy-logic rules to choose an optimal AC. Fuzzy logic is a good
choice for such a system, as experts cannot feasibly create exact rules for this.

The clear downside of this method is the requirement for an expert to spend
significant effort to develop such rules. Furthermore, Newcome et al. [7] showed
that one set of rules might be suboptimal on different hardware or with a different
force model. In addition, as AutoPas itself is developed, with new ACs and
improvements upon existing ACs, such rules would have to be adapted.

As the above points suggest the infeasibility of a general set of expert rules
that could be universally applied, we instead design rules specifically targeted to-
wards the experiments in Section 6. The exact design of the rules was determined
using data gathered by running the very experiments intended to be optimised.
This could be useful, for example, when conducting several experiments with
a range of parameters: one experiment is run with slow full searches to collect
data to build the rules, and the rest can then use the Expert strategy. We should
emphasise that these rules will not perform optimally for all experiments that
could be run with AutoPas.

5.3 The Random Forest Strategy

The Random Forest strategy trains a random forest that maps the live simulation
statistics to a suggested AC. To train the model, a dataset needs to be collected
prior to the simulation being run.

Such a data-driven method is far easier to use than the Expert strategy,
requiring only a set of simulation scenarios from which to generate perfor-
mance data. This avoids much of the difficulties mentioned previously for expert-
knowledge methods as, if the set of scenarios is already provided, trialling the
ACs and training a model requires only a minor amount of effort.

The key issue comes from generating the set of simulation scenarios: the
scenarios should be representative of the experiments intended to be optimised
with the strategy, but generating the scenarios should not be so computationally
expensive that it negates the benefits of the strategy nor, for the same reason,
should expensive, irrelevant scenarios be included. As such, some expert decisions
regarding the dataset still need to be made.

To avoid the first of these issues, we generate scenarios using simple random
and fixed-grid distributions of particles, which are likely physically unrealistic
(molecules too close together) but are representative at the algorithmic level. To
address the second issue, these “fake” scenarios were designed to mimic a variety
of different real scenarios, ultimately with the experiments in Section 6 in mind.

6 Experimental Setup

We chose three scenarios to demonstrate our strategies. Between these scenar-
ios, there is minimal overlap in optimal AC. For brevity, we only discuss the
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behaviour of the simulations at a high level. The full details of the software
versions used and the experiment parameters can be found in the repository
mentioned in the Appendix. We tested our selection strategies on HSUper3.

Heating Sphere In the heating sphere experiment, a small sphere of molecules
is placed in the centre of a large domain with reflective boundaries. Only one
MPI rank is used. The simulation begins at a low temperature, which keeps the
molecules together. The temperature is raised slowly, causing the sphere to start
losing molecules until the domain fills sparsely. Due to the molecules dispersing,
a change in the optimal AC can be seen.

Exploding Liquid In the exploding liquid experiment used in prior AutoPas
works [3], a thick layer of molecules is placed in the centre of an otherwise
only sparsely filled tube-like domain with periodic boundaries. The thick layer
explodes outwards, along the tube, in two dense “waves” of molecules in either
direction. The domain is split into six subdomains along the length of the tube,
each with its own MPI rank and AutoPas container. As such, there are different
optimal ACs in each subdomain depending on whether it contains the dense
wave, the remnants left after the wave, or if the wave has not reached it yet.

Rayleigh-Taylor In the Rayleigh-Taylor experiment, a layer of larger, lighter
molecules is placed under a denser layer of smaller, heavier molecules, with the
molecule layers mixing as the larger molecules rise to the top and the smaller
molecules sink to the bottom. The simulation was run on 40 MPI ranks with the
distribution of the two molecule types, leading to different optimal ACs on each
MPI rank.

7 Results & Analysis

We first determined which single AC was optimal for each experiment (i.e. with-
out any algorithm selection) and found that each experiment had a different
optimal single AC. These make good targets to reach with our algorithm selec-
tion methods. If we achieve a speedup relative to these, we see an advantage
of dynamically selecting and changing ACs in different regions and at differ-
ent points in time. However, in the case of the Predictive and Random Forest
strategies, getting close to these targets is still a success as a user without prior
knowledge of which single AC is optimal will still benefit. But this second crite-
rion of success is not valid for the Expert strategy as the methodology in Section
5.2 suggests that this single optimal AC would be known, and so a success for
this strategy requires a speedup relative to this AC.
3 Compute nodes featuring 256GB of RAM, 2 Intel Icelake sockets each with an In-

tel(R) Xeon (R) Platinum 8360Y processor with 36 cores; https://portal.hpc.hsu-
hh.de/documentation/hsuper/
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(a) Heating Sphere.
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(b) Exploding Liquid.
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(c) Rayleigh Taylor.

Fig. 1: Comparison of the accumulated time spent calculating forces for each
thread across the entire simulation, for the three algorithmic configurations that
are the optimal single configurations for each experiment ((a) LC-C04-N3L-AoS-
CSF1, (b) LC-C04_HCP-N3L-SoA-CSF1, (c) LC-C08-N3L-SoA-CSF0.5) and each
selection strategy. Results are shown as speedups relative to the optimal single
configuration for that experiment. Note that the LC-C04-N3L-AoS-CSF1 with the
Rayleigh-Taylor experiment timed out upon reaching the maximum wall time
allowed on HSUper – about 7 times the wall time that LC-C08-N3L-SoA-CSF0.5
took and only achieving approximately three-quarters of the total iterations.

In Figure 1, we see the speedup of these three optimal ACs, the naive Full
Search strategy, and the three strategies presented in this work relative to each
experiment’s optimal single AC.

We see that the one experiment’s optimal AC could perform significantly
worse in other experiments. While, to an expert, such optimal ACs make sense
in hindsight, suggesting such an AC with no experience running similar simula-
tions is challenging. Furthermore, in some time periods and subdomains, other
ACs perform significantly better than these (and other works have found other
optimal ACs [7].) Therefore, we see benefit from dynamic algorithm selection
from a wide range of ACs.

Considering now the selection strategies, we see that the Predictive strategy
achieves mixed success, achieving near-1.0 speedup only in the Rayleigh-Taylor
experiment. That it achieves a worse performance than Full Search in the Ex-
ploding Liquid experiment can be explained by the dramatic changes in the
computational profile invalidating the linear models.

The Expert and Random Forest strategies perform similarly, with Random
Forest performing slightly better in the Exploding Liquid scenario. In the Heat-
ing Sphere experiment, both strategies achieve speedups of 1.25, correctly fol-
lowing the switch in the optimal AC. This represents the significant potential of
the methods and dynamic algorithm selection more generally. In the Exploding
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Liquid experiment, however, the methods achieve “speedups” of 0.85 and 0.89,
respectively and in the Rayleigh-Taylor experiment, they achieve 1.04 and 1.03,
respectively.

In these experiments, the optimal single AC is the AC, which is optimal on
the MPI ranks with the most work (dense regions of particles), even if these
denser regions move and thus, the ranks with this high workload change. As a
dense region moves out of a rank, the optimal AC changes, but as the workload
of the rank also reduces, selecting a new AC has a minimal impact overall. We
nevertheless should remember that, for the Random Forest approach, a near-1.0
speedup is still successful, and we expect that improved MPI load balancing
would lead to a greater potential for above-1.0 speedup in such experiments
and the current results suggest the Expert and Random Forest strategies could
realise this potential.

The overhead of evaluating all the models and rules was generally found to
be negligible.

8 Conclusion and Outlook

Of the three methods presented in this work, the Random Forest strategy ap-
pears the most successful – balancing performance with accessibility – and is
able to achieve speedups of 1.25 compared to simply picking a single AC. If we
instead compare against the prior naive Full Search strategy, we see a speedup
of 4.05, demonstrating a significant improvement. Whilst it is expected that the
Expert strategy could be improved to match or even beat the Random Forest
strategy, this is not a tractable solution to the problem and is unsustainable. The
Predictive strategy struggles significantly, particularly in dramatically changing
scenarios; however, the further development of such an accessible, data-free ap-
proach could be valuable in some situations.

As previously mentioned, a key issue with such data-driven models is the
need for good data, the generation of which is itself an expert decision. A more
accessible solution could be to combine online learning with an understanding
of confidence: in scenarios where the model has not been trained on similar
data, the model becomes unconfident in its suggestions, triggering exploration
of the search space and thus online learning, and therefore better performance
in further similar simulation runs. Thus, the user generates data relevant to the
simulations they want to optimise.
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Appendix

All input files, outputs, job scripts for training data and the experiments, mod-
els, and fuzzy rule files, as well as the software versions used can be found at
https://github.com/SamNewcome/Algorithm-Selection-in-Short-Range
-Molecular-Dynamics-Simulations.
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