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Abstract. In recent years, NNs have driven significant advances in ma-
chine learning. However, as tasks grow more complex, NNs often require
large numbers of trainable parameters, which increases computational
and energy demands. VQCs offer a promising alternative: they leverage
quantum mechanics to capture intricate relationships and typically need
fewer parameters. In this work, we evaluate NNs and VQCs on simple
supervised and reinforcement learning tasks, examining models with dif-
ferent parameter sizes. We simulate VQCs and execute selected parts of
the training process on real quantum hardware to approximate actual
training times. Our results show that VQCs can match NNs in perfor-
mance while using significantly fewer parameters, despite longer training
durations. As quantum technology and algorithms advance, and VQC
architectures improve, we posit that VQCs could become advantageous
for certain machine learning tasks.
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1 Introduction

Machine learning has advanced rapidly in recent years, with neural networks
(NNs) playing a pivotal role in this progress [1]. As tasks become more complex,
NNs often require a large number of trainable parameters, increasing computa-
tional and energy demands [25, 4]. Variational quantum circuits (VQCs) are a
promising alternative to classical NNs [9, 5]. They harness quantum mechanics
to model intricate relationships and usually need fewer parameters [22, 17].

Quantum computing shows considerable promise in supervised learning (SL)
and reinforcement learning (RL). Schuld et al. [22] introduced a scalable VQC
architecture and showed that it achieves strong SL performance with fewer pa-
rameters than NNs. Their design inspires the architecture used in our work.
Chen et al. [6] illustrated that VQCs can perform well in RL by approximating
the action-value function through Q-learning in simple environments. Inspired
by this work, we use their custom Frozen Lake environment and Q-learning ap-
proach to evaluate NNs and VQCs with varying parameter counts. Kruse et al.
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[15] explored architectural factors in VQCs for the Pendulum and LunarLander
tasks [3], revealing that design choices like input encoding, layering, and qubit
count strongly affect outcomes. Despite using about 96% fewer parameters than
NNs, VQCs earned lower rewards and struggled with scalability and robustness.

In this work, we evaluate the potential of VQCs relative to NNs on simple SL
and RL tasks. To our knowledge, no existing work thoroughly compares NNs and
VQCs for machine learning tasks with a detailed focus on model architectures,
parameter counts, and training times. We carry out most VQC experiments on a
simulator but approximate real hardware training times by running selected cir-
cuits on an actual quantum device. Our findings align with prior work, showing
that VQCs can achieve performance similar to NNs while using fewer parame-
ters. Although training VQCs takes longer, we suggest that continued advances
in quantum technology, improvements in VQC architectures, and algorithmic
optimizations may make VQCs appealing for certain applications. All code for
the experiments is available here1.

2 Approach

For each machine learning task, we evaluate NNs and VQCs with varying pa-
rameter counts to identify one of each with comparable performance. To ensure
fairness, both models function as black-box components in the same classical
learning algorithm. Although we conduct the VQC experiments primarily with
a quantum simulator, we estimate real-hardware training times by running se-
lected circuits—collected from simulator-based training—on an actual device.

2.1 Classical Neural Network Architecture

We employ a fully connected feedforward NN. The input layer has as many nodes
as the input size, followed by one or more hidden layers whose quantities and
sizes are hyperparameters. Each hidden layer uses element-wise ReLU activation
[18, 14]. The output layer has as many nodes as the number of possible outputs
and uses a softmax activation to produce a probability distribution [14].

2.2 Variational Quantum Circuit Architecture

The proposed VQC follows a circuit centric design [22] and involves three stages:
state preparation, variational layers, and measurement.

State Preparation We use angle embedding or amplitude embedding, chosen
as a hyperparameter. Angle embedding maps each input feature to a rotation
angle, using at least as many qubits as the input dimension. Amplitude embed-
ding directly maps input values to the amplitudes of an n-qubit state, which
requires ⌈log2(D)⌉ qubits to represent D-dimensional data [23, 22].
1 https://github.com/alexander-feist/nn-vqc-params
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Fig. 1: (a) The l-th variational layer with 4 qubits, where θl = [θ1,1, θ1,2, . . . , θ4,3]
are the trainable parameters for layer l. (b) A VQC with L layers; U(x) encodes
the input x, and Ul(θl) represents the trainable operations in layer l [5, 22].

Variational Layers Variational layers are composed of single-qubit rotations,
followed by CNOT gates for entanglement (Fig. 1a). The trainable parameters θ,
initialized randomly in [−1, 1], are passed through φ(z) = π ·tanh(z) to constrain
angles to (−π, π) [12]. We also use data re-uploading [20, 24], which embeds the
classical input values before every variational layer (Fig. 1b).

Measurement We measure the expectation value of the Pauli-Z operator on
the first K qubits, where K matches the output dimension, and add trainable
biases (initialized in [−0.001, 0.001]). A softmax function is applied to derive
output probabilities. To expand the [−1, 1] Pauli-Z range, we include a trainable
scaling parameter (initialized at 1) to enhance the effective output range [24].

3 Experimental Setup

We primarily use PyTorch [19] and PennyLane [2] with the default.qubit
device for statevector simulation. All experiments run on a Linux cluster with
Intel® CoreTM i9-9900 processors. To ensure reproducibility, we fix seeds and
repeat each experiment ten times (seeds 0–9). For each task, we conduct an
exhaustive grid search over model-based hyperparameters. This yields equally
sized sets of NNs and VQCs spanning a range of parameter counts, allowing us to
identify pairs of models with comparable performance but different complexities.

3.1 Supervised Learning Experiments

We conduct SL classification tasks on the Iris, Wine, and WDBC (Wisconsin
Diagnostic Breast Cancer) datasets. We use accuracy as the main performance
metric. Features are scaled to [0, 1] and data is split into 75% training and 25%
testing, with the test portion evenly divided into validation and test sets.

We train for 50 epochs with cross-entropy loss and Adam [11] at a learning
rate of 0.01, using a batch size of 8. Validation performance is checked after
each epoch. The checkpoint with the highest validation accuracy is evaluated
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on the test set. For Iris and Wine, the NN grid search covers {1,2,3} hidden
layers ×{3,6,9,12} nodes per layer. For the VQC, we use angle or amplitude
embedding and 1 to 6 variational layers. For WDBC (30 features), we limit
VQCs to amplitude embedding to avoid 30-qubit circuits and vary layers from
1 to 6. To match, we search for NNs with {1,2} hidden layers ×{3,6,9} nodes.

3.2 Reinforcement Learning Experiments

Our RL experiments use Q-learning with the models (NN or VQC) approximat-
ing the action-value function Q. The test reward serves as the main performance
metric. Following Chen et al. [6], we use the deterministic (non-slippery) Frozen
Lake environment [3] with custom rewards. The 4×4 grid contains safe (frozen)
tiles and holes. The agent starts in the top-left and must reach the bottom-right
goal. Steps yield −0.01, reaching the goal +1.0, and falling into a hole −0.2.

We train for 500 episodes, each limited to 100 steps. The model observes
a 4-dimensional binary-encoded state (one of 16 tiles) and outputs four action
values. We use identical policy and target models, updating the target every 20
steps. Actions follow an ϵ-greedy strategy: ϵ starts at 1.0 and decays by 0.99 after
each episode until reaching 0.01. We use experience replay [16] with memory size
1000, sampling a batch of 16 transitions per step. The policy model is trained
via Adam [11] at a learning rate of 0.01, using MSE loss and a discount factor of
0.95. After training, we evaluate over 50 test episodes without exploration. The
grid search for NNs spans {1,2,3} hidden layers ×{3,6,9,12} nodes. For VQCs,
it varies embedding (amplitude or angle) and the number of layers from 1 to 6.

3.3 Executing Quantum Circuits on Real Quantum Hardware

Running full training on real hardware is costly, so we log certain circuits (inputs
and parameters) during simulator-based training and re-run those circuits on
actual quantum processors through IBM’s cloud-based Qiskit Runtime. Specif-
ically, we pick circuits from five epochs/episodes under seed 0, unparameterize
them with the logged values, and import them into Qiskit [10]. The circuits
are executed on ibm_fez (version 2) backed by IBM’s Heron R2 processor. By
comparing Qiskit Runtime’s usage metric to the simulator time for the same
circuits, we compute an average ratio and apply it to circuit execution times of
simulator-based training to estimate real-hardware training times.

4 Results

All metrics are averaged over ten runs (seeds 0–9). We first examine grid-search
outcomes to select NNs and VQCs with comparable performance for each task.

4.1 Supervised Learning Results

We focus on models that perform well and choose an NN-VQC pair whose test
accuracies and training curves suggest similar performance. Across all datasets,
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Fig. 2: Accuracy curves for each chosen NN and VQC. Averaged across ten runs
(seeds 0–9); shaded areas are 95% confidence intervals.
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Fig. 3: Training reward (moving average over up to last 50 episodes) on Frozen
Lake for the comparable NN and VQC. Mean across ten runs (seeds 0–9); shaded
areas are 95% confidence intervals. Dashed red line (0.95) marks solved.

the NNs performed overall better compared to the VQCs. However, for each
dataset, we could find an NN-VQC pair where both models are well-performing
(more than 96% test accuracy) and comparable in performance. The VQCs have
fewer parameters but consistently require substantially longer training times.
Figure 2 illustrates training accuracy for our NN–VQC pairs. Although the VQCs
converge faster initially, the NNs ultimately achieve slightly higher accuracy.

4.2 Reinforcement Learning Results

We select models that achieve the maximum test reward of 0.95 and choose an
NN–VQC pair with similar learning dynamics but relatively low training times.
Training-time variance is high because episode length depends on agent behavior.
Over all models, VQCs generally outperform NNs here, which may be due to
the grid search only considering low-parameter models, favoring VQCs. However,
the VQCs take much longer to train. Figure 3 shows the training reward of our
most comparable NN and VQC. The VQC converges faster and is more stable.

4.3 Training Times Using Real Quantum Hardware

Estimated real-hardware training times for VQCs are significantly higher than
simulator times, as shown in Table 1, based on per-circuit execution durations.
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Table 1: Mean execution time per circuit on the simulator vs. real hardware, as
well as the hardware-to-simulator time ratio.

Task VQC Qubits Circuit
Depth

Simulator
(s)

Real Hard-
ware (s) Ratio

SL: Iris VQC-28 (Ang, 2) 4 17 0.011 0.314 28.995
SL: Wine VQC-40 (Amp, 3) 4 100 0.034 0.349 10.295
SL: WDBC VQC-63 (Amp, 4) 5 261 0.084 0.329 3.932
RL VQC-41 (Ang, 3) 4 25 0.016 0.322 20.406

Table 2: Mean training times (with 95% confidence intervals) for comparable
NNs and VQCs.

Model Training Time (s)

Task NN VQC NN VQC Simulator VQC Real Hardware

SL: Iris NN-75 VQC-28 1.8 ± 0.0 92.6 ± 0.2 1806.1 ± 4.1
SL: Wine NN-105 VQC-40 1.7 ± 0.0 313.5 ± 1.3 2437.4 ± 11.6
SL: WDBC NN-101 VQC-63 5.4 ± 0.0 2482.9 ± 12.7 7732.5 ± 37.2
RL NN-112 VQC-41 95.0 ± 30.7 2511.4 ± 219.3 39330.9 ± 3458.8

Using angle embedding leads to lower circuit depth compared to amplitude
embedding, resulting in smaller simulator runtimes but higher hardware-to-
simulator time ratios. For 5-qubit circuits, the hardware ratio decreases, in-
dicating that as qubit counts increase, the simulator grows slower relative to
hardware, consistent with existing literature [8, 7]. Since overhead and noise are
excluded, these estimates likely represent ideal scenarios, but further optimiza-
tions (e.g., fewer shots, specialized training environments) could significantly
reduce real-hardware training times.

4.4 Evaluating Training Performance

Table 2 shows training times of the selected NNs and VQCs. For similar perfor-
mance, VQCs require 62.7% (Iris SL), 61.9% (Wine SL), 37.6% (WDBC SL),
and 63.4% (Frozen Lake RL) fewer parameters, but take much longer to train.
For the RL task, equalizing the two training times would require the VQC to
be about 414 times faster, which may sound large but could become feasible
as quantum hardware matures much faster than classical systems. Architectural
and algorithmic improvements—such as specialized VQC optimizers—may also
reduce this ratio. Furthermore, although VQCs often converge faster in accuracy
or reward, our fixed training schedule does not exploit early convergence.

Even in our small-scale tasks, we see a trend of longer training times for larger
models, especially for VQCs. This trend may be more pronounced in complex
tasks where standard NNs can have millions of parameters, potentially offering
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a more substantial advantage to VQCs that require fewer parameters [13, 17].
However, it remains unclear whether VQCs can scale effectively to complex tasks
and still match NNs [21, 15]. Rather than replacing NNs outright, VQCs may
find value in scenarios where they offer distinct benefits—especially if quantum
hardware, training algorithms, and circuit designs continue to improve.

5 Conclusion

We created a unified environment to compare classical NNs and VQCs as inter-
changeable models for multiple machine learning tasks. VQCs achieved compa-
rable performance with fewer parameters—especially in RL—but required much
longer training times. Because our tasks used at most five qubits, real-hardware
execution was slower than simulation. Our findings underscore the simplicity of
the tasks, yet suggest that as quantum technology matures, VQC-friendly algo-
rithms improve, and circuit architectures evolve, VQCs may offer advantages for
specific applications. Future work could explore more complex tasks and assess
quantum device fidelity to better evaluate VQC performance in realistic settings.
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