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Abstract. In this work, we explore the Transcriptomics Atlas pipeline
adapted for cost-efficient and high-throughput computing in the cloud.
We propose a scalable, cloud-native architecture designed for running a
resource-intensive aligner – STAR – and processing hundreds of terabytes
of RNA-sequencing data. We implement optimization techniques that
significantly reduce cost and execution time. The impact of particular
optimizations is measured in medium-scale experiments followed by a
large-scale experiment that leverages all of them and validates the design.
Early stopping optimization allows us to reduce the total alignment time
by 23%. For the cloud environment, we identify suitable EC2 instance
types and verify the applicability of spot instances usage.

Keywords: Transcriptomics · Optimization · STAR · Alignment · High-
Throughput Computing · Cloud-computing · AWS

1 Introduction

The cloud is, in many cases, the infrastructure of choice for large-scale genomic
pipelines, as it promises scalability, cost efficiency, and availability of on-demand
resources. There are multiple recent examples of pipelines that have been devel-
oped for genomic data, built using cloud services [6,13,15]. Such cloud-native
pipelines take advantage of the capabilities of cloud services, allowing parallelism,
scalability, and elasticity, often with autoscaling, and follow the principles of
infrastructure as code for application deployment and environment setup. How-
ever, cloud infrastructure is complex, as there are multiple services offered with
a wide range of configuration options, so exploiting the full potential of clouds
requires combining application-specific expertise with the ability to fine-tune
cloud infrastructure configuration. For example, there are multiple compute ser-
vice options, storage systems, databases, and queuing/messaging systems, etc.,
so making the right choice becomes a challenge. In this paper, we present a case
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study of running a Transcriptomics Atlas pipeline in the AWS cloud. It is a data-
and compute-intensive pipeline, based on a sequence aligner – STAR [9] – that
processes hundreds of terabytes of RNA-seq data. Our aim is to answer research
questions, such as: (1) How to take advantage of the intermediate results to re-
duce time and cost? (2) How to select the optimal level of parallelism within a
single node? (3) Which instance types are the most cost-efficient for alignment?
(4) How suitable are spot instances for running resource-intensive aligners?

2 Background and related work

Transcriptome and NGS sequencing. The human transcriptome consists of
different types of RNA, ranging from messenger RNA (mRNA) encoding pro-
teins to various forms of non-coding RNA with mostly regulatory functions [10].
Transcriptome-releated analyses are essential in modern medical research and
typically performed in a comparative context using next-generation sequencing
(NGS) data. Lack of comprehensive NGS data under standard conditions signif-
icantly increases the cost of experiments [7] and in response to this, we designed
the Transcriptomics Atlas, where data from a representative collection of human
tissues were processed in a uniform manner. NGS is based on short reads and
enables rapid and precise identification of the transcriptome composition within
a biological sample. However, due to the limited length of reads, subsequent
assembly into a complete transcriptome necessitates specialized bioinformatics
algorithms in a process called alignment [3].

RNA-sequencing in the cloud. In [17], authors explore different paral-
lel computing strategies and limitations for multiple genomic tools, including
architecture-aware and data-storage optimizations. Research on STAR-based
workflow as well as cost and throughput analysis for cloud and HPC experi-
ments are carried out in [16]. Pseudoaligners (e.g. Salmon, Kallisto) are rec-
ommended by [13] when cost plays a critical role. Research carried out in [8]
shows that serverless computing for RNA sequencing is a valid approach when
high parallelism is the end goal, with HiSat2 running on AWS Lambda. How-
ever, deploying STAR to serverless services is more challenging compared to
less resource-intensive aligners. Although possible, it is not recommended for
large-scale processing due to decreased cost-efficiency compared to VM-based
solutions [12]. Furthermore, in [4] authors moved an HPC workflow to serverless
services and identified multiple challenges with efficient data partitioning, trans-
fer and insufficient object storage performance. Our previous work regarding the
Transcriptomics Atlas [5] focused on understanding the pipeline requirements
for a similar workflow in HPC and the cloud.

3 Pipeline and cloud architecture

Pipeline description. As presented in Fig. 1, the first phase consists of access-
ing an SRA file using prefetch and converting it into FASTQ with fasterq-dump.
The next and most important, time-consuming step is the alignment with STAR.
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Fig. 1: Transcriptomics Atlas Pipeline.

Finally, the acquired BAM file is normalized using DESeq2. Instead of STAR, one
can use alternative aligners (HiSat2) or pseudoaligners (Salmon). We are running
STAR v2.7.10b with "–quantMode GeneCounts" option. The steps are connected
using a Python script, and the current implementation of the Transcriptomics
Atlas project is publicly available on GitHub under the MIT license [2].

Input dataset. Data were obtained from the NCBI Sequence Reads Archive
(SRA) [1], focusing on nucleotide sequences from human samples, filtered by
tissue type. The query for the SRA database targeted publicly available, human-
origin data sequenced with Illumina machines. We downloaded metadata for
matching SRA IDs and selected those with compressed sequence sizes between
200MB and 30GB. We define the range by taking into account the size of libraries
for typical transcriptome sequencing and output from the most commonly used
wet lab sequencing protocols. For the Transcriptomics Atlas, we aim for 100–200
(with a good mapping rate) per tissue, selecting up to 400 samples per tissue,
resulting in 7216 files totalling 17TB of SRA data.

Resource requirements. STAR is a resource-intensive aligner that uses a
precomputed genome index in the alignment step, which has to be loaded into the
system memory. The generation of such an index is a one-time task. Depending
on the type and release version of the genome, the index differs in size. We use
the human genome of the "Toplevel" type distributed by Ensembl [14]. Previous
work [11] showed that an older release (108) results in an index of 85GiB in
size, and using a newer one (release 111) is much smaller (29.5GiB) and faster
(12 times). STAR requires additional memory for sorting a BAM file, usually
1-2 GiB, but outliers may require even 20.5 GiB. The pipeline requires enough
disk space to handle intermediate files such as FASTQ files along with SRA and
BAM files. The fasterq-dump tool creates FASTQ files, on average, 7.5 times
bigger than the original SRA file; however, outliers can be even 17 times larger.
Moreover, additional space is required during conversion. This use case focuses
on files within the 200MB - 30GB range. Therefore, we can estimate that the
required space should not exceed 550GiB.

Cloud architecture for the Transcriptomics Atlas pipeline is presented in
Fig. 2. The main processing is performed on a virtual cluster of EC2 spot in-
stances launched from a custom machine image containing all the required soft-
ware. The initial step for each worker is to connect to an NFS instance and load
the STAR index into memory. Subsequently, workers acquire the SRA IDs from
the queue and process them using the pipeline (Fig. 1). The transcriptomics re-
sults are stored in a dedicated S3 bucket. Execution metadata are gathered for
performance analysis and saved in a Dynamodb table. Metrics are saved using
the CloudWatch service, which gives insight into resource utilization. The pro-
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Fig. 2: Cloud architecture for Transcriptomics Atlas Pipeline.

posed approach is easily scalable and adaptable for similar workflows. Having
extensive control over the underlying compute resources allows us to fine-tune
the configuration for given requirements, which improves cost-efficiency.

4 Application-specific Optimizations

Early stopping during alignment. Early stopping is a common method
to stop the training of machine learning models when the desired accuracy is
achieved. We apply a similar approach to alignment by discarding low-quality
or invalid sequences during processing. It is possible, as STAR reports on the
intermediate mapping rate at runtime, which allows the identification of such
sequences. As shown in [11], utilization of live metrics from Log.progress.out file
can boost alignment throughput by up to 19.5%. This feature is beneficial when
we cannot determine the quality of the FASTQ beforehand.
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Fig. 3: Impact of early stopping
threshold on total alignment time.

For the Transcriptomics Atlas project,
the mapping rate threshold is set at 30%.
However, this is highly dependent on the
use case. Pipelines that utilize STAR in
a similar scenario and require sequences
of the highest quality will greatly bene-
fit from this feature. In Fig. 3, we present
an extended analysis based on the exper-
iment carried out in [11]. If we set the
threshold at 80%, we would reduce the to-
tal compute time by 60%. The minimal
number of processed spots was set to 10%.

Cost-efficient allocation of cores. The recommended approach for STAR
aligner is to match the thread count with the number of available cores in the
node. Authors of the original STAR publication [9] claim that "STAR exhibits
close to linear scaling of the throughput rate with the number of threads". How-
ever, the original research lacks detailed performance analysis, which is impor-
tant to maximize CPU efficiency. We decided to test the scalability of STAR
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to confirm these claims and find an optimal number of cores per node, which
will improve the throughput of the pipeline. The test suite consists of 3 FASTQ
files of different sizes. Execution times are measured on two different 16-vCPU
instance types - with and without Simultaneous Multi-Threading (SMT).

The test results are presented in 4, and we see the benefit of the increased
number of threads. However, there is a noticeable drop in efficiency - for 16
threads and m7a.large instance, we get 84% and 72% efficiency for 16GiB file
and 81GiB respectively. This is especially visible for the m6a.large instance,
which uses SMT and exceeding 8 threads further decreases efficiency. Based on
the acquired metrics, we focused on 8-vCPU instances for the best cost-efficiency.
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Fig. 4: Efficiency of the STAR aligner.

5 Cloud Infrastructure Optimizations

Instance type comparison in AWS. According to the requirements in Sec-
tion 3 and knowing that STAR is a memory-intensive program, we decided to
focus on instances with a higher memory per CPU factor with at least 64GiB
of RAM. Using instance types which have more cores but less memory per CPU
may require faster block storage and result in increased under-utilization during
other, much less CPU-intensive steps (e.g. prefetch). Using more cores in a single
worker node would also reduce CPU efficiency during alignment as described in
Section 4. The selected instance types of the current generation that meet these
requirements are compared in Table 1. This table also presents the total cost and
time for performing STAR alignment on 50 random FASTQ files. The results
indicate r7a.2xlarge as the fastest and cheapest type. However, when using spot
instances, the availability of a given type is also important.

Table 1: Cost-efficiency analysis of selected instance types.
Instance

type vCPU Cores RAM [GiB] On-demand
price [h]

Total STAR
execution time [h]

Total
cost

r6a.2xlarge 8 4 64 $0.4536 8.00 3.63 $
r6i.2xlarge 8 4 64 $0.5040 8.04 4.05 $
r7a.2xlarge 8 8 64 $0.6086 5.48 3.33 $
r7i.2xlarge 8 4 64 $0.5292 7.66 4.05 $
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Cost-efficiency of spot instances. Spot instances on AWS offer compute
resources at a lower cost (depending on instance type and current market de-
mand). However, such instances can be terminated with a 2-minute notice. For
example, an r7a.2xlarge instance can be acquired with 50%-60% discount. Our
use case fits this model as the optimized pipeline runs relatively quickly (mean =
8 min). Unfortunately, interruptions result in an additional STAR initialization
phase and restarting the computations on a new instance. However, with a good
configuration (instance types with a low interruption rate), using spot instances
should result in relatively stable computations. In Fig. 5. we present the pro-
cessing 1000 SRA files on r7a.2xlarge instances. During the experiment, only five
interruptions occurred and resulted in a loss of <1% of the total running time.
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Fig. 5: Spot instances usage experiment timeline.

6 Large-scale Experiment

The goal is to test the pipeline on a larger scale, measure, and analyze resource
usage. We use the input data from Section 3 and the configuration:

– EC2 (Spot): 50 r7a.2xlarge instances (EBS: 550GB, GP3, 500MiB/s, 3000IOPS)
– Input: 7216 SRA files (2.5GB avg, 17.9TB total size, max=29.9GB)
– Index: Based on Toplevel human genome, release 111, 29.5GB size.

The experiment used 1102.5 node hours in total and the implemented opti-
mizations gave the expected improvements. The timeline is presented in Fig. 6.
We processed 130TB of FASTQ data and acquired an average mapping rate
between 57%-87%, depending on the tissue. Early stopping feature reduced the
total run time of STAR by about 23%. Using spot instances saved 50% the
compute costs, but 138 interruptions occurred, wasting only 2.9% of the to-
tal instances’ run time. The average CPU utilization across all instances was
about 58% for the entire pipeline and 78% for STAR exclusively. 93% of all in-
stances run time the RAM utilization was between 45% and 55%, and only 1.7%
required more than 60% of the instance memory, suggesting an area for improve-
ment. STAR accounted for 71% of the total workload time. In Fig. 7, we show
aggregated CPU and memory usage during STAR for normalized metrics gath-
ered during alignments longer than 10 minutes (n=1091). The estimated cost of
the experiment is about $477 - including compute (70%), storage (18.5%) and
data transfer costs (11.5%). This is equivalent to about $0.066 per FASTQ file.
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Fig. 7: STAR aggregated and normalized metrics for CPU and memory usage.

7 Conclusions

This work presents the cloud architecture for the Transcriptomics Atlas pipeline
with the STAR aligner as its core. The optimizations described here signifi-
cantly increased performance and throughput. Analysis of a large-scale experi-
ment showed that early stopping saved 23% of the total running time of STAR.
For use cases with a high mapping rate threshold, this feature would be even
more beneficial. In addition, we observe that the pipeline is a great fit for spot
instances and reduces computational costs by 50%-60%. Analysis of STAR’s ef-
ficiency will help to choose the right configuration in order to maximize the
throughput in similar scenarios. We identified one of the best instance types
on AWS for alignment in terms of processing time and cost. Many insights in
this work are applicable outside the cloud environment, extending the research
results for HPC centres and workstations. As concluded in [11], a faster STAR
alignment can also improve the time required for a clinician to make a diagnosis.
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