
Accelerating LBM with C++ STL Asynchronous

Parallel Model

Ziheng Yuan1 and Takashi Shimokawabe2

1 Department of Electrical Engineering and Information Systems
Graduate School of Engineering, The University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
Zihengyuan22@g.ecc.u-tokyo.ac.jp

2 Information Technology Center, The University of Tokyo
6-2-3 Kashiwanoha, Kashiwa-Shi, Chiba, 277-0882, Japan

shimokawabe@cc.u-tokyo.ac.jp

Abstract. Asynchronous computation is an important optimization tech-
nique in scienti�c computation. The upcoming C++26 standard intro-
duces a new asynchronous execution framework, stdexec, enabling the
development of high-performance code using only standard C++. This
paper explores the parallelization of single-GPU and multi-GPU lattice
Boltzmann method computations using stdexec and further optimizes
performance through its asynchronous execution model. Experimental
results show that asynchronous stdexec achieves approximately 83.5%-
105.4% of the performance of C++ stdpar. These results suggest poten-
tial for further optimizations in the future, providing additional options
for high-performance computing development in pure C++.

Keywords: Parallel Computing · High Performance Computing · GPU
· stdexec · lattice Boltzmann method

1 Introduction

The parallel programming libraries can currently be categorized into two ap-
proaches. The �rst approach is hardware-speci�c libraries designed for particular
hardware platforms, characterized by their ability to provide �ne-grained con-
trol over hardware. Representative examples include CUDA [1], OpenCL [2] and
HIP [3]. The second approach libraries provide high-level APIs to abstract hard-
ware details. Typical examples of this category include Kokkos [4], OpenMP [5]
and OpenACC [6]. To enable programming using pure C++ and enhance code
compatibility, two new features have been or will be introduced into the C++
standard, referred to as C++ standard language parallel model (stdpar) [7] and
C++ standard model for asynchronous execution (stdexec) [8], following the sec-
ond approach. stdpar has already been integrated into C++17. As an extension
to the existing algorithm, stdpar enables parallel execution support for speci�c
function in standard algorithm library. stdexec provides the asynchronous exe-
cution framework, which is not supported by stdpar. Before stdexec is integrated

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

2 Z.Yuan et al.

into C++26 in the future. a prototype of stdexec library provided by NVIDIA
is available for testing. This paper focuses on evaluating the feasibility of per-
forming parallel programming using C++ stdexec, analyzing its performance
and comparing it with other parallel programming labraries. Lattice Boltzmann
method (LBM) [9] is selected as the benchmark problem for evaluation due to
its wide applicability in the �eld of �uid dynamic and its suitability for parallel
computation.

2 Background Knowledge

2.1 C++ stdexec

The stdexec sender/receiver model is de�ned by three critical components: execu-
tor, sender/receiver, and scheduler. The role of the executor is to provide a uni-
form task execution interface by abstracting hardware resources. The sender/re-
ceiver is responsible for supplying tasks to the executor. The scheduler serves to
provide an abstract interface for the management of hardware resource [10]. It
is important to note that one scheduler can only manage one hardware resource
associated with it, this hardware could be CPU or GPU. Listing 1.1 and 1.2
illustrates the structure of C++ STL parallel model with an example.

1 auto A = stdexec ::just()

2 | exec::on(sched , stdexec ::bulk(n, GPU_task1))

3 | stdexec ::then(CPU_task)

4 | stdexec :: let_value ([&]{ return stdexec ::just()

5 | exec::on(sched , stdexec ::bulk(N, GPU_task2));});

Listing 1.1: C++ stdexec synchronous example

1 auto A = stdexec :: when_all(stdexec ::just()

2 | exec::on(sched_low , stdexec ::bulk(N, GPU_task2)),

3 stdexec ::just()

4 | exec::on(sched_high , stdexec ::bulk(n, GPU_task1))

5 | stdexec ::then(CPU_task));

Listing 1.2: C++ stdexec asynchronous example

In this scenario, three tasks executed on either the CPU or GPU: CPU_task,
GPU_task1 and GPU_task2. Among them, both CPU_task and GPU_task2 are
waiting the result from GPU_task1. Listing 1.1 and 1.2 represent di�erent ap-
proaches to executing the same tasks. stdexec::bulk() is the stdexec equiv-
alent of a for-loop, utilizing the resources allocated by stdexec::on() to ex-
ecute tasks [11]. stdexec::when_all() provides synchronization functionality.
Listing 1.1 implements basic synchronous execution. GPU_task1, CPU_task and
GPU_task2 is executed in serial order. Listing 1.2 implements asynchronous ex-
ecution by assigning schedulers with di�erent priority levels. The program as-
signs high priority scheduler sched_high to GPU_task1 and low priority sched-
uler sched_low to GPU_task2. While GPU_task2 is being continuously executed,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

Accelerating LBM with C++ STL Asynchronous Parallel Model 3

GPU_task1 with higher priority, will complete its execution �rst and subsequently
proceed to execute CPU_task, overlap the execution time.

2.2 Lattice Boltzmann method

LBM is a �uid dynamic algorithm that simulates �uid by emulating the stream-
ing and collision of virtual �uid particles in mesoscale. Particles motion is char-
acterized by discrete velocity set according to the Boltzmann equation [9]. The
LBM uniformly divides the computational domain into lattice like orthogonal
grids [12]. This experiments use D3Q27 model as the simulation model. Neces-
sary physical values include density ρ, velocity u and equilibrium distribution
function fi are computed from equation (1)-(3).

ρ =
∑
i

fi u =
1

ρ

∑
i

cifi (1)

fi(x+ ci∆t, t+∆t) = fi(x, t) (2)

fi(x, t+∆t) = f∗
i (x, t+∆t) +Ω(x, t) (3)

In these equations, ci represent for velocity set, ∆t for time step, Ω for
collision model. Equation (1) shows density and velocity computation method.
Equation (2) calculates streaming step. Equation (3) calculates the collision step.
In this experiment, we use the classic BGK collision model [13] and bounce-back
boundary condition [14] for LBM.

Boundary computation and LBM streaming-collision computation is the two
main steps for LBM computation. The boundary code computes the numerical
values at the boundaries based on the condition, storing the results for use in
the computation of streaming-collision step. For multi-GPU experiments, data
exchange between multiple GPUs is based on MPI. The performance bench-
mark used is Mega Lattice Updates Per Second (MLUPS), which represents
the number of LBM lattice updates (computations) per unit time. The speci�c
calculation method is outlined as follows:

MLUPS =
lattice size× number of iterations

total time consumption
(4)

3 Experiment and result

3.1 Experiment condition

Hardware resource The experiments were conducted on a Wisteria-Aquarious
HPC platform provided by The University of Tokyo, utilizing A100 40GB GPUs.
Each computation node in Wisteria-Aquarious contains 8 GPUs. The compila-
tion was performed using the nvidia/24.1 compiler with the C++20 standard.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

4 Z.Yuan et al.

iteration time =
10000

iteration time =
20000

Fig. 1: Visualization of simulation result. The content of these images represents
the variation of the velocity norm along the z-axis over time.

CUDA stdpar OpenACC stdexec
0

1000

2000

3000

4000

5000

6000

P
e
rf

o
rm

a
n
c
e
 (

M
L
U

P
S

)

(a)

CUDA stdpar OpenACC stdexec
0

50

100

150

200

(b)

CUDA stdpar OpenACC stdexec
0

200

400

600

800

1000

(c)

CUDA stdpar OpenACC stdexec
0

5

10

15

20

T
im

e
 (

m
s
)

(d)

Fig. 2: Performance of single GPU execution and time breakdown comparison
of stdexec, CUDA, stdpar and OpenACC in single GPU case. (a): Performance
of single GPU execution. (b): Kernel launch time consumption. (c): Boundary
computation time consumption. (d): LBM streaming-collision computation time
consumption.

LBM condition The code presented in this article is applied to the benchmark
simulation case of 3D �ow around a cylindrical obstacle. A solid cylinder is �xed
along the z-axis. A uniform �uid �ow enters the computational domain along
the x-axis. The computational domain has a size of 512 Ö 512 Ö 256 for both
single GPU and multi GPU conditions. Reynolds number Re = 1000. Figure 1
illustrates the evolution of the �ow �eld over iterations.

3.2 Single GPU result

First, the performance of the code is tested under a single GPU scenario. The
implementation of stdexec code is similar to Listing 1.1, where GPU_task1 cor-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

Accelerating LBM with C++ STL Asynchronous Parallel Model 5

2GPUs 4GPUs 8GPUs 16GPUs
 0

10000

20000

30000

40000

50000

60000

M
L

U
P

S

CUDA

stdpar

OpenACC

stdexec

Fig. 3: Performance of multi GPU execution.

responds to boundary computation and GPU_task2 corresponds to streaming-
collision computation. However, the code does not include the CPU_task part,
as it represents the function required by multi-GPU communication. Figure 2
(a) illustrates the performance of di�erent codes when solving the LBM prob-
lem under the same condition described in Section 3.1. It can be observed that
CUDA achieves the best parallel computing performance. OpenACC and stdpar
exhibit similar performance, while stdexec shows the lowest performance. The
performance of stdexec reaches 65.2% of CUDA and 81.6% of stdpar. This re-
sult leads to the conclusion that stdexec does not o�er a performance advantage
when relying solely on stdexec::bulk() for parallel computation. An analysis
of the function's execution time is required to �nd the reason.

According to Figure 2(b), Compared to the fastest CUDA implementation,
the kernel launch time of stdexec is approximately 60 times longer [15]. As shown
in Figure 2(c), for boundary kernels, which involve small amounts of data, the
performance across di�erent implementations is similar. However, Figure 2(d)
reveals a more signi�cant performance gap for large data size LBM streaming
collision computation, with stdexec showing a execution time consumption dif-
ference of approximately 38.0% compared to CUDA.

3.3 Multi GPU result

The performance of the code is then tested in a multi-GPU scenario. The imple-
mentation of stdexec code is similar to Listing 1.1, with CPU_task corresponds
to boundary data exchange function based on MPI, this introduces additional
communication cost. Figure 3 presents the performance of di�erent codes when
solving the LBM problem under the same condition described in Section 3.1.

Similar to the results from the single-GPU tests, the performance of stdexec
in the multi-GPU scenario still shows a signi�cant gap compared to CUDA ac-
cording to Figure 4, while OpenACC and stdpar exhibit similar performance. In
the 2 GPU case, the performance of stdexec is approximately 65.5% of CUDA
and 81.0% of stdpar. In the 4 GPU case, the performance of stdexec is approxi-
mately 58.7% of CUDA and 73.8% of stdpar. In the 8 GPU case, the performance
of stdexec is approximately 62.1% of CUDA and 71.4% of stdpar. In the 16 GPU
case, the performance of stdexec is approximately 59.9% of CUDA and 88.1% of
stdpar.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

6 Z.Yuan et al.

2GPUs 4GPUs 8GPUs 16GPUs
 0

10000

20000

30000

40000

50000

60000

M
L

U
P

S

CUDA

stdpar

OpenACC

stdexec

stdexec async

Fig. 4: Performance of multi GPU asynchronous execution. To compare the per-
formance of stdexec async, the results for CUDA, stdpar, OpenACC, and stdexec
are the same as those presented in Figure 3.

3.4 Multi GPU asynchronous result

Finally, the performance of asynchronous computation in a multi-GPU setting
is evaluated. Figure 4 presents the performance of di�erent implementations
when solving the same LBM problem, with experimental conditions remaining
the same as before. In this experiment, stdexec async utilize the methods intro-
duced in Listing 1.2. The high-priority GPU kernel for boundary computation
completes �rst and initiates MPI communication, e�ectively overlapping the
MPI communication time with the execution of the low-priority scheduler GPU
kernel for streaming-collision. In the 2 GPU case, the performance of stdexec
async is approximately 67.8% of CUDA, 83.7% of stdpar and 100.3% of stdexec.
In the 4 GPU case, the performance of stdexec async is approximately 67.3%
of CUDA, 84.7% of stdpar and 114.8% of stdexec. in the 8 GPU case, the per-
formance of stdexec async is approximately 72.6% of CUDA, 83.5% of stdpar
and 117.0% of stdexec. in the 16 GPU case, the performance of stdexec async is
approximately 71.6% of CUDA, 105.4% of stdpar and 119.7% of stdexec.

By analyzing the results, it can be observed that compared to stdexec with-
out asynchronous computation, the asynchronous version of stdexec achieves up
to a 19.7% performance improvement. To determine the source of performance
improvements, it is necessary to analyze the execution time of individual kernels.
Figure 5 presents the kernel execution times for a multi-GPU stdexec program
without asynchronous computation, as well as for async, when running on 16
GPUs. Figure 5(a) illustrates the boundary computation time consumption per
iteration, showing that performance of the two is nearly identical. A similar trend
is observed for both LBM streaming collision computation and MPI communi-
cation shown in Figure 5(b) and Figure 5(c). The only notable di�erence lies in
the overall kernel execution time shown in Figure 5(d), which is the combination
of MPI communication of LBM streaming collision compution time consump-
tion. The performance of 16 GPUs in stdexec async is higher because inter-node
communication is hidden, as expected. Since the overall computational domain
does not change as GPU number increases, the size allocated to each GPU de-
creases. At the same time, the size of boundary remains unchanged, resulting
in a gradual increase in the proportion of communication, which creates room

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

Accelerating LBM with C++ STL Asynchronous Parallel Model 7

stdexec stdexec async
0

20

40

60

80

100

120

(a)

stdexec stdexec async
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e
 (

m
s
)

(b)

stdexec stdexec async
0

200

400

600

800

1000

(c)

stdexec stdexec async
0

0.5

1

1.5

2

2.5

T
im

e
 (

m
s
)

(d)

Fig. 5: Time breakdown comparison of sync and async stdexec in 16 GPUs
case. (a): Boundary computation time. (b): LBM streaming-collision compu-
tation time. (c): MPI communication time. (d): Overall kernel execution time.

for optimization.This shows the importance of asynchronous communication and
may be explained as the strength of stdexec's ability to introduce asynchronous
communication into pure C++ code.

Observations indicate that stdexec async achieves 23.2% reduction in execu-
tion time compared with stdpar. 95.7% of the communication time was hidden
in stdexec async. This reduction is attributed to the asynchronous execution of
MPI communication and LBM streaming collision computation. However, due
to the high kernel launch overhead at the start of each iteration (approximately
170 ms), part of the performance gains achieved by stdexec async is lost. As a
result, the overall reduction in program runtime is smaller than the reduction in
kernel execution time.

4 Conclusion

In summary, this paper evaluates the application of the C++26 stdexec pro-
totype in the LBM. The performance of stdexec is compared with other pro-
gramming languages and implementation approaches, and kernel analysis is con-
ducted to explain the observed performance di�erences. The test code is based
on the prototype provided by NVIDIA and utilizes advanced C++ syntax intro-
duced in C++17 and later versions. The experimental results demonstrate the
baseline performance of stdexec, showing that its performance is comparable to
stdpar in some cases. This suggests that stdexec provides an alternative option
for developing high-performance C++ code. We also encountered software en-
gineering challenges related to compilers and libraries, and shared information

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

8 Z.Yuan et al.

with NVIDIA engineers. We will continue to track the progress of the C++26
standard and explore further optimizations for the code in the future.

5 Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Number JP24K02947.
This work was also partly supported by JHPCN projects jh240052 and jh250037.

References

1. NVIDIA CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit. Last accessed
2025/02/10

2. OpenCL O�cial guide. https://github.com/KhronosGroup/OpenCL-Guide. Last
accessed 2025/02/15

3. Diederichs, D.: Available now: new HIP SDK helps democratize GPU comput-
ing. https://community.amd.com/t5/instinct-accelerators/available-now-new-hip-
sdk-helps-democratize-gpu-computing/ba-p/621029. Last accessed 2025/02/10

4. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., et al.: Kokkos
3: Programming model extensions for the exascale era. In: IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 4, pp. 805�817. IEEE (2021)

5. Haseeb, M., Ding, N., Deslippe, J., Awan, M.: Evaluating performance and porta-
bility of a core bioinformatics kernel on multiple vendor GPUs. In: 2021 Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 68�78. IEEE, St. Louis, MO (2021)

6. Farber, R.: Parallel programming with OpenACC. Newnes, USA (2016)
7. Lopez, G., Olsen, D., Adelstein Lelbach, B.: Accelerating Stan-

dard C++ with GPUs Using stdpar. NVIDIA Technical Blog �
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-
stdpar/. Last accessed 2025/02/10

8. Garland, M., et al.: A Uni�ed Executors Proposal for C++ | P0443R14.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html.
Last accessed 2025/02/10

9. Kruger, T.: The Lattice Boltzmann Method: Principle and Practice. ISBN 978-3-
319-44647-9 (2017)

10. Arutyunyan, R.: P2500R0 C++17 parallel algorithms and P2300 Published Pro-
posal. ISO/IEC JTC1/SC22/WG21 (2022)

11. Dominiak, M., et al.: std::execution Published Proposal. https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2023/p2300r7.html. Last accessed
2025/02/10

12. Lagrava, D., Malaspinas, O., Latt, J., Chopard, B.: Advances in multi-domain
lattice Boltzmann grid re�nement. J. Comput. Phys. 231(14), 4808�4822 (2012).
https://doi.org/10.1016/j.jcp.2012.03.015

13. Qian, Y.H., et al.: Lattice BGK Models for Navier-Stokes Equation. Europhys.
Lett. 17(6), 479 (1992). https://doi.org/10.1209/0295-5075/17/6/001

14. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. J. Fluid Mech. 271, 285�309 (1994).
https://doi.org/10.1017/S0022112094001783

15. Haseeb, M., Wei, W., Deslippe, J., Cook, B.: That's Right � The Same C++ STL
Asynchronous Parallel Code Runs on CPUs and GPUs. SC23, Denver, USA (2023)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_30

https://dx.doi.org/10.1007/978-3-031-97635-3_30
https://dx.doi.org/10.1007/978-3-031-97635-3_30

