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Abstract. Seismic monitoring is used to ensure the safety of workers
in the rock massif. The main security threat is a rockburst, which can
be predicted based on the sequence of seismic events. An important task
is to develop a mining forecasting model that can take into account the
structural heterogeneity of the mountain range and select the necessary
forecast horizon depending on monitoring data. In the paper, we propose
a flexible approach that combines multiple machine learning models de-
signed to solve various tasks (clustering, time series forecasting) as parts
of one composite model. This approach allows for adjustment of the
forecast horizon of the model, which enables it to flexibly adapt to rock
massifs with different geological structures and seismic monitoring sta-
tions. Also, the use of clustering models allows us to take into account
the physical and mechanical features of the rockburst formation process.
According to experimental results, the resulting composite model showed
more accurate results for specific forecast horizons, compared with clas-
sical "hierarchical" models and machine learning models. At the same
time, the obtained model allows us to interpret the results from the rock
mechanics point of view.

Keywords: Rockburst forecasting · Geomonitoring · Clustering · Time
series forecasting · Machine learning · Data-driven modeling.

1 Introduction

Rockbursts are a highly complex dynamic phenomenon. The formation of a
rockburst is influenced by many factors, such as the physical and mechanical
properties of the rock mass, stress state, geological structure, and engineering
position [1]. The classical method of rockburst forecasting is the use of vari-
ous statistical criteria. However, those criteria ignore rock massif’s physical and
mechanical parameters, and it leads to poor quality of forecast [2].

Many machine learning methods are used in rockburst forecasting [3] and it
is an actively developing field of signal processing and machine learning meth-
ods for solving rock mechanic problems. However, these models can restore only
extremely simple and trivial relationships between seismic events and the proba-
bility of a rockburst [4]. Another problem is "class imbalance", which is expressed
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in the fact that rockburst is an extremely rare event, and their number is signif-
icantly less than the number of seismic events. Correcting class imbalance leads
to a lack of data in the training dataset and the inability to use deep learning
models [5]. The principal scheme of the seismic monitoring station and an ex-
ample of data visualization is shown in Fig. 1. An example of sensor data from
a seismic monitoring system is shown in Tab. 1, where the input data consists
of timestamps and coordinates of seismic events.

Table 1. Example of input seismic sensor data

Timestamp X Y Z Energy
00:00:00 0.120 0.200 0.032 1200
00:01:00 0.1284 0.201 0.038 2000
00:02:00 0.1089 0.513 0.011 11000

The sequence of seismic events appears during mining processes in the massif
and can be represented as a time series that consists of discrete events. Each event
is characterized by a time coordinate and a characteristic describing the "degree
of destruction" (e.g., the magnitude of the signal’s energy). Clustering methods
are used to localize the spatial zone of a potential rockburst, which corresponds
to each event with its spatial cluster (Fig. 1).
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Fig. 1. Principal scheme of the seismic monitoring station, based on the triangulation
of seismic events in the rock massif

However, the geological heterogeneity of the rock massif leads to an uneven
distribution of rockburst. It leads to the appearance of clusters with an increased
or decreased probability of a rockburst.

In this paper, we propose a data-driven automated hybrid modelling ap-
proach, which intends to solve the problems described above. The main idea
is to combine temporal and spatial sensor data in one feature space and apply
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an automated forecasting model design using a graph-based pipeline representa-
tion and evolutionary optimization. We use spatial clustering methods based on
machine learning models for spatial and temporal data seismic monitoring com-
binations. Then, we present the data within each cluster as a discrete time series.
The proposed approach is fully automated and has been tested on experimental
data, where it has shown its effectiveness compared to similar approaches.

2 Related Works

Classical methods of rockburst forecasting are based mainly on a determinis-
tic empirical approach [6]. This approach cannot be adapted to the uncertain
conditions of a complex dynamic system, which is the studied rock massif. In
the rock mechanic "hierarchical model" theory, the criterion for the rockburst
formation is a violation of the stationarity/quasi-stationarity conditions of the
modeled process (for example, the Poisson process). Hierarchical models can
usually predict only the total number and time of rockbursts at fixed spatial
coordinates.

Short-term prediction methods based on monitoring seismic data can simul-
taneously predict both the time of the occurrence and the expected location of
the rockburst [4]. These methods are primarily focusing on signal processing and
filtering. Nevertheless, this approach has proven to be more flexible and scalable
than the empirical, numerical, and physical models [7].

Deep learning models have long established themselves as an effective method
for modeling various processes using both temporal and spatial data types. In
several works [7], the use of such models for the problem of rockburst prediction
has shown high efficiency. The reason is the ability to model complex non-linear
relationships between factors affecting the probability of rockburst occurrences.
However, the disadvantages of this approach include the low interpretability of
the model results and the tendency to overfit due to the relatively small size of
the datasets.

The hybrid approach has also found its application in rockburst forecasting.
This approach combines the capabilities of existing rock mechanic models and
machine learning models. Classical models provide a representation of geologi-
cal heterogeneities in the rock massif. ML models reproduce complex nonlinear
connections between inhomogeneities, external factors, and the seismic activity
of the rock massif. Accordingly, the combination of classical models that take
into account the physical laws and machine learning models capable of modeling
complex nonlinear dependencies is the most promising trend of development in
this area [8]. Another hybrid approach introduced a hybrid model combining
KMeansSMOTE oversampling with Random Forest optimization using Optuna
(KMSORF). This model demonstrated high accuracy in predicting rockburst
levels in real-world mining projects while addressing challenges like imbalanced
datasets. Another work integrated Particle Swarm Optimization (PSO) with
neural networks (e.g., BPNN) and ensemble methods like XGBoost, achieving
prediction accuracies exceeding 0.9 in practical applications [12]. These develop-
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ments highlight how combining classical geomechanical principles with machine
learning techniques can enhance prediction precision and robustness under com-
plex geological conditions.

3 Proposed approach

Currently, the identification of data-driven models with a complex heterogeneous
structure remains an unsolved problem [9]. The desired mathematical model can
be developed using a single machine learning model and a hybrid (composite)
approach [10]. The set of clustering models includes HDBSCAN, KMeans and
Spectral models. For time series forecasting, such models as Singular Spectrum
Analysis (SSA), Random Forest, and XGBoost are used.

The aim of the proposed approach is to predict rockbursts in a technologically
disturbed rock massif. We can consider our massif as a discrete dynamical system
Xnext = F (Xcur), where Xcur is the current state of the massif. The discrete-
time propagator F is given by the flow map:

F (Xcur) = Xcur +

∫ (k+1)△t

k△t

f(x(r))dr (1)

Since one of the stages of the model is spatial clustering of seismic events,
Xcur can be represented as a matrix X ∈ RN×M , where N is the number of
clusters, and M is the length of the time series of seismic events.

X =

x1(t1) . . . x1(tm)
x2(t1) . . . x2(tm)
xn(t1) . . . xn(tm)

 (2)

The future state of the system Xnext can be expressed in a similar way:

Xnext =

x1(tm+1) . . . x1(tm+k)
x2(tm+1) . . . x2(tm+k)
xn(tm+1) . . . xn(tm+k)

 (3)

Here the hyper-parameters of the proposed model are N and K — the length
of the forecast.

The task of finding function F is simultaneously a data-driven modeling task
and a multi-criteria optimization task [11], shown in Eq. 4. Since both spatial and
temporal coordinates describe each seismic event, the proposed model consists
of various machine learning models most suitable for a particular data type in a
single composite model.

Û =

m⋂
i=1

argmin
u∈W

fi(u) (4)

where:

– fi — objective criteria that characterizes the modelling quality;
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– W — a set of possible solutions (search space);
– Û — a vector of composite model hyperparameters;
–

⋂m
i=1 — an intersection of the set of solutions for each of the criteria, and m

is the number of criteria used during optimization.

To solve the problem of multi-criteria optimization, we proposed the following
criteria:

– Silhouette criterion. The silhouette shows how the average distance to the
objects in its cluster differs from the average distance to the objects of other
clusters. This value is in the range [−1, 1]. Values close to -1 correspond to
poor (scattered) clusterization, and values close to zero indicate that clusters
intersect and overlap.

– FAR - The proportion of false alarms, and MAR - the proportion
of missed alarms. A sliding window is used to calculate this criterion. Both
metrics have identical lower and upper bounds - [0, 1]. The selection of such
metrics is based on its applicability for expert use and in order to take into
account class imbalance.

In this paper, three values of the detection window width were taken. The
short-, medium-, and long-term forecast horizons correspond to the values of six
hours, two days, and seven days before and after the appearance of the rockburst.

4 Experiments

In order to evaluate the effectiveness of the proposed approach, experimental
comparisons of the composite model with existing approaches were carried out.
Obtained composite model consists of three machine learning models. The HDB-
SCAN model is used for spatial clusterization of seismic events, KNN model is
used to fill in gaps in time series, and SSA model is used to time series forecast-
ing. As a dataset, we used a synthetic dataset that was developed considering key
characteristics of real seismic phenomena — seven rockbursts were distributed
unevenly in space and time, reproducing the class imbalance problem typical
for real monitoring data. The results show that this approach to synthetic data
generation allows for effective testing and comparison of various model architec-
tures (hierarchical, LSTM, and the proposed composite model), revealing their
strengths and weaknesses across different forecasting horizons. In order to cor-
rectly evaluate the work of similar time series prediction models, we carried out
preliminary clustering of seismic events using the proposed composite model.
Selected cluster is "stable" in time, i.e. they include seismic events during the
entire monitoring period.

Fig. 3 shows the solutions considered during optimization. FAR/MAR metric
value shows the normalized ratio of the sum of false and missed predicted rock-
bursts to true rockbursts. The closer the value is to 1, the greater the number
of false and missed rockbursts.
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Fig. 2. Proposed approach for rockburst forecasting

For model comparison, we used the "hierarchical model" as the baseline,
the LSTM as the DL approach and our composite model. The results of the
experiment are shown in Table 2 (Italics indicate the best result for each of the
forecast horizons, bold indicates the best result among all horizons). Composite
model showed superior result among all models with long-term forecasts and
the best result among all models when using a medium-term forecast. Such
results are related to the fact that the use of spatial data in the composite
model allows localizing time-stable clusters of seismic events. The probability of
rockburst in such clusters increases over time, which explains the effectiveness
of the composite model in the medium and long-term forecast horizon. This also
explains the effectiveness of the LSTM model in short-term forecasts, because in
the absence of formed clusters, such a model allows better modeling of complex
nonlinear dependencies that lead to rockbursts.

Table 2. FAR-MAR criteria comparison

Model Short-term (6 hours) Mid-term (2 days) Long-term (7 days)
Hierarchical model 0.993 0.974 0.758
LSTM 0.417 0.714 0.688
Composite model 0.533 0.365 0.562
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Fig. 3. Comparison of FAR/MAR metrics for three proposed forecast horizons

5 Conclusion

This paper proposes an approach to the problem of rockburst forecasting, based
on seismic monitoring data. The idea of the approach is to automatically com-
bine machine learning models based on temporal and spatial data into a single
composite model.

The multi-criteria optimization of the proposed composite model has shown
its effectiveness. Appropriate values of the forecast horizon and the seismic event
silhouette criterion make it possible to obtain results that are superior to hier-
archical and DL models.

The proposed model implements a data-driven approach. On the one hand, it
simultaneously uses spatial and temporal coordinates of seismic events, using the
entire amount of information obtained during seismic monitoring. On the other
hand, it reproduces rock mechanics phenomena, such as zones of the stress-strain
state of the console, making it more interpretable than other models. The use of
a synthetic seismic monitoring dataset in our research serves as an experimental
demonstration of the importance of creating directionally generated synthetic
multidimensional time series for improving the robustness of machine learning
models.

We can conclude composite model is a more effective means of predicting
rockbursts than classical hierarchical models and is slightly inferior to DL mod-
els when using short-term forecasts. The proposed approach based on machine
learning and signal processing methods, is an effective forecasting algorithm.
However, it can be improved by including more complex forecasting models and
new criteria.

The implemented algorithms and examples of their application are available
in https://github.com/ITMO-NSS-team/RockBurst.AI repository.
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