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Abstract. Surrogate models can enhance performance in HPC appli-
cations. Cache-based surrogates use pre-calculated simulation results for
interpolation or extrapolation. However, this is only effective if retrieval
is faster than simulation. This paper proposes an MPI-based distributed
architecture where parallel processes share memory to build a distributed
hash table. Three DHT approaches for HPC are presented. A lock-free
design outperforms both coarse-grained and fine-grained locking DHTs,
demonstrating good scaling for read and write performance. The lock-
free DHT improved the runtime of a reactive transport simulation up to
42%.
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1 Introduction

During the last years, several research groups have demonstrated the benefits of
surrogate models for accelerating parallel multi-physics simulations. While some
propose physics-informed neural networks, others use fast caches within their
surrogate approach [15, 8,2, 3]. For example, Reaktoro employs On-Demand Ma-
chine Learning (ODML) to speed up chemical calculations by extrapolating new
chemical states [8]. POET utilizes a distributed hash table (DHT) as fast storage
for simulation results, which are reused to approximate subsequent results [2].
However, the efficiency of such cache-based surrogates hinges on query and re-
trieval times being significantly faster than full physics simulations. Additionally,
using a surrogate model results in a trade-off between runtime and accuracy.
The performance of distributed key-value stores has been a focus of much
research, including addressing, data consistency, and collision handling. Another
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key advancement has been the adoption of RDMA-capable networks to acceler-
ate communication [6,14,4,7,1,5, 12, 2]. While most key-value stores are server-
based [4,14,7,6,9], this architecture is suboptimal for HPC due to additional
hardware and setup requirements. Server-based approaches offer data consis-
tency, but distributed approaches can enable direct data access from remote
storage using RDMA, at the cost of requiring additional synchronization proto-
cols. Due to space restrictions, we refer to a deeper disucssion of server-based
key-value stores and related work in [10].

MPI, the de facto standard in HPC, offers an RMA API [13, pp. 547], making
it a natural choice for implementing key-value stores to leverage HPC advance-
ments [5,12]. An MPI-based DHT was previously integrated into the POET
simulator [2].

This paper explores fully distributed key-value store architectures based on
MPI for seamless integration into scientific applications. The contributions of
this work are:

— Presenting three distributed hash-table architectures using the MPI one-
sided communication API: two synchronized and one lock-free approach.

— Evaluating the three approaches, demonstrating the performance advantages
of the lock-free approach by up to 1,400 times in a synthetic benchmark.

— The lock-free DHT’s excellent scaling for read and write requests, achieving
16 million read and 15 million write operations per second with 640 processes.

— Integrating the lock-free DHT as a fast data cache into a reactive transport
simulation, results in runtime improvements of up to 42%.

2 Improving Synchronization Methods for Distributed
Hash Tables with MPI

The MPI-DHT API |2] consists of four operations: DHT _create, DHT _read, DHT_-
write, and DHT_free. DHT _read and DHT_write use MPI’s one-sided communi-
cation operations MPI_Put and MPI_Get to access remote memory. This section
presents three approaches to solve the data consistency problem:

— Coarse-grained locking: The original MPI-DHT, employing MPI’s passive
target synchronization.

— Fine-grained locking: An MPI-DHT variant utilizing MPI’s atomic opera-
tions for explicit synchronization.

— Lock-free: MPI-DHT with optimistic concurrency control, using checksums
for conflict detection.

The MPI library was chosen for its wide use in HPC, providing a “plug-and-
play*“ solution for MPI-parallelized applications.
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2.1 Coarse-Grained Lock-Based MPI-DHT

The original implementation uses MPI’s passive target synchronization with
MPI_Win_lock and MPI_Win_unlock [2]. Each process allocates memory, which
is divided into buckets containing a key-value pair and metadata, and which is
shared with the other processes using a MPI_Window. A bucket’s address is a
process rank and an index of the bucket within the memory window. A 64-bit
hash sum of the key determines the target rank, and a set of bucket indices is
derived from the hash sum.

For write operations, the target rank and possible bucket indices are calcu-
lated. The first bucket is checked; if unoccupied, data is written. If occupied, the
next bucket is checked until an empty bucket or a matching key is found. Read
operations similarly traverse buckets to find a matching key.

The MPI-DHT implements a Readers& Writers semantic. DHT _read or DHT_-
write operations lock the entire target rank’s memory window in shared or
exclusive mode, respectively.

2.2 Fine-Grained Lock-Based MPI-DHT

Here, adressing and collision handling are identical to the coarse-grained ap-
proach. However, instead of locking the entire memory window, the fine-grained
mechanism locks only the bucket being accessed. To avoid excessive memory
overhead from using MPI windows for each bucket, the implementation uses
self-implemented locking on 8-byte integers with MPI_Compare_and_swap and
MPI_Fetch_and_op operations, inspired by Open MPI’s passive-target synchro-
nization.

A lock value of 0210000000 indicates an active writer (exclusive lock). Write
processes atomically set the lock to this value if it is currently zero. Readers
increment the lock atomically until the value is less than 0210000000. If the value
is greater or equal to 0x10000000, the read request is revoked, and the process
tries to acquire the lock again. This allows concurrent reads but exclusive writes.
Locks are released by decrementing the lock value. An 8-byte lock is included
in each bucket, requiring up to 7 bytes of padding, resulting in a maximum
overhead of 15 bytes per bucket compared to the coarse-grained approach.

All windows are pre-locked with MPI_Win_lock_all during setup to ensure
that the MPI standard is not violated by performing RMA operations outside
an epoch [13, p. 588].

2.3 Lock-Free MPI-DHT

This approach uses the same addressing and collision handling but replaces lock-
ing with checksum calculation. Each bucket includes a 32-bit value for storing a
checksum. The approach is inspired by the work of Pilaf [14].

For DHT _write, the origin process calculates a checksum of the key-value pair
and appends it to the bucket data. A reading process retrieves the bucket data,
recalculates the checksum, and returns the key-value pair if both checksums
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match. Mismatches trigger a retry, and persistent mismatches invalidate the
bucket. Write operations can overwrite invalid buckets. This checksum-based
approach is a lock-free mechanism, avoiding atomic operations or locks. It adds
only 4 bytes of memory overhead per bucket for the checksum compared to the
coarse-grained approach.

Similar to the fine-grained approach, all windows are locked by all processes
with MPI_Win_lock_all prior to any RMA operation.

3 Evaluation

3.1 Test Bed

The benchmarks were conducted on the cluster of the Potsdam Institute for
Climate Impact Research (PIK). Each node has two AMD EPYC 9554 CPUs
with 64 cores each and a base clock speed of 3.1 GHz. All 128 cores per node
were used. The nodes share 768 GB of DDR5 memory and are interconnected
via NVIDIA Mellanox ConnectX-7 NDR Infiniband (400 Gbps per port). The
GNU Compiler Collection 14.1 and OpenMPI 5.0.6 with UCX 1.17.0 were used
for the experiments. The code was compiled with -03 -DNDEBUG. Open MPI was

configured to use single atomic remote memory operations?.

3.2 Synthetic Benchmarks

— First experiment: This benchmark evaluates maximum read /write through-
put. It generates a random number to derive an 80-byte key, with a value
size of 104 bytes (modeling POET’s key-value pair size) [2]. Uniform and
Zipfian distributions were used for random number generation. The Zipfian
distribution (skew of 99, range 1 to 712,500) models POET’s access requests.
The benchmark writes and then reads 500,000 key-value pairs.

— Second experiment: This benchmark evaluates a more read-intensive mixed
workload (95% reads, 5% writes), also reflecting POET’s access pattern [2].

The experiments used 1 to 5 nodes (up to 640 processes), with each process
providing 1 GB of memory for the DHT. The benchmark was replicated five
times, and median throughput values, calculated as operations per second, with
standard deviations are shown in Figures 1a and 1b (uniform distribution) and
Figures 2a and 2b (Zipfian).

In the first experiment, the lock-free DHT outperformed both synchronized
approaches in read-only and write-only benchmarks with both distributions. For
example, with 640 processes, the lock-free DHT achieved over 16 million read
operations per second, about 3 times higher than fine-grained locking and 2
times higher than coarse-grained locking. Write throughput was lower than read
throughput for all approaches, as expected.

4 See osc_ucx_acc_single_intrinsic of Open MPI’'s MCA configuration: https:
//docs.open-mpi.org/en/main/mca.html
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Fig. 1. Throughput of read and write operations with uniform distributed keys.
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Fig. 2. Throughput of read and write operations with zipfian distributed keys.
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Fig. 3. Throughput of mixed workload with a 95% Read/5% Write ratio for uniform
and zipfian distributed keys.
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Table 1 shows write-only performance for 640 processes, demonstrating the
overhead of locking. The lock-free DHT performed significantly better than the
other approaches.

Table 1. First experiment: Write-only Performance for 640 Processes in Million Op-
erations per Second.

Workload Coarse-Grained Fine-Grained Lock-Free
uniform 0.67 4.75 13.9
zipfian 0.01 0.03 14.3

For the second mixed workload benchmark (Figure 3a and 3b), the lock-free
DHT’s throughput was close to its read-only performance. Fine-grained locking
showed some improvement over coarse-grained locking with the uniform distri-
bution, but both synchronized approaches were challenged by the Zipfian distri-
bution. Table 2 shows checksum mismatches in the lock-free DHT. Mismatches
occurred only with the Zipfian distribution, indicating concurrent writes, but
with negligible results.

Table 2. Second experiment: Checksum mismatches for the lock-free DHT.

Workload # of Tasks # of Mismatches Percentage |%)]
mixed - Zipfian 128 13 1.1-107°
mixed - Zipfian 256 16 6.5-107°
mixed - Zipfian 384 25 6.8-107°
mixed - Zipfian 512 31 6.3-107°
mixed - Zipfian 640 64 1.1-107°
Others Any 0 0

3.3 HPC Use-Case: POET

POET is an MPI-parallelized reactive transport simulator that combines solute
flow and transport in porous media with geochemical reactions. The simulation
used an explicit upwind advection scheme on a 500 x 1500 grid with homogeneous
species concentrations and the same chemistry setup as in previous work [2].
Due to advective transport, a sharp reaction front occurs, allowing caching of
previously simulated results in the DHT. Input parameters for the geochemical
simulation are rounded to serve as keys for the DHT, and stored values consist
of the exact results. The simulation ran for 500 time steps, simulating flux,
transport, and geochemical reaction.’

The simulation was scaled from 1 to 5 nodes, with one MPI task per CPU
core. Experiments were repeated three times for each DHT approach and a
reference without DHT. Median runtimes are shown in Figure 4. The average
hit rate over all DHT runs was 91.8%.

The lock-free DHT was the only approach that improved simulation runtime.
The best result was a 41.9% reduction in simulation time with 128 processes.

® The code is available: [11].
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Fig. 4. Runtime of the chemical simulation of POET w/ and w/o DHT.

Table 3 shows the checksum mismatches observed during simulations with the
lock-free DHT, which were minimal. Additionally, the relative performance gain
is shown.

Table 3. Checksum mismatches and performance gain of the POET simulation with
lock-free MPI-DHT compared to the Reference Run without DHT.

# of Tasks # of Mismatches Percentage (%] Performance Gain [%)]

128 1507 44-1077 41.9%
256 3049 8.9.107% 29.5%
384 4315 1.3-1073 23.3%
512 2884 8.4-107* 10.1%
640 4421 1.3-1073 14.1%

4 Conclusion and Future Work

This paper compared MPI-based DHT implementations with coarse-grained
locking, fine-grained locking, and lock-free approaches. The lock-free DHT out-
performed the synchronized approaches in synthetic benchmarks, with read
throughput of 16 million operations per second and write throughput of 15 mil-
lion operations per second. In the POET simulation, the lock-free DHT improved
runtime, reducing it up to 42%.
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