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Abstract. In high-performance computing (HPC) environments, effi-
cient execution of AI applications is critical for optimal performance and
resource utilization. In this work, we extend the PAS2P methodology to
AI applications through message passing on HPC Cloud systems, defin-
ing the AI Application Model to describe their performance behavior.
This extension identifies phases within AI applications, enabling analysis
to focus on these phases instead of the entire application. By concentrat-
ing on them, we can better evaluate AI application efficiency, providing
insights into system performance and guiding future optimizations for
large-scale AI tasks on HPC infrastructure.
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1 Introduction
In recent years, the growing demand for AI applications has increased the need
for HPC systems to efficiently run large-scale AI workloads [9]. These appli-
cations, especially in deep learning and distributed training, require significant
computational resources and optimized strategies. However, as AI models grow
in complexity, assessing their efficient resource usage has become a major chal-
lenge. The problem lies not only in performing a comprehensive performance
analysis but also in the uncertainty of whether applications use resources effi-
ciently.

PAS2P [8] (Parallel Application Signature for Performance Analysis and Pre-
diction) is a methodology originally designed to analyze and predict the perfor-
mance of parallel scientific applications. PAS2P instruments the application to
collect performance data from application processes, which are then analyzed
to generate an abstract model of the behavior of the application. This model
identifies different phases in the execution of the application, each representing
a specific segment of parallel code. By analyzing these phases, PAS2P predicts
the performance of the application by executing an application signature.

In this work, we extend the Parallel Application Signature for Performance
Analysis and Prediction (PAS2P) methodology, originally designed for scientific
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parallel applications, to AI applications running on HPC systems, including those
in cloud computing environments. We propose extending the PAS2P method-
ology to model the performance of AI applications, enabling the identification
of phases within AI workloads. By isolating the phases, we can better analyze
the resource efficiency of AI applications, focusing on areas where optimization
could have the most significant impact. Quickly evaluating the efficiency of an AI
application through its signature helps select cloud resources matched to its per-
formance needs, enabling better resource allocation and optimizing performance
and cost.

We have analyzed the MNIST dataset[5], the ResNet-50 model[2], using
Horovod[7], k-means[4], a machine learning algorithm for unsupervised learn-
ing, DeepGalaxy and and pinn-mpi, Physics-informed neural networks (PINNs)
are widely used to solve forward and inverse problems in fluid mechanics. The
paper is organized as follows: Section 2 provides the related works. Section 3 de-
scribes the methodology proposed for AI programs. Section 4 presents the model
validation followed by a conclusion and future work in Section 5.

2 Related Works

In the realm of HPC for AI applications, several approaches have been developed
to evaluate the performance of distributed CPU-based workloads. The growing
complexity of AI applications, particularly in the areas of deep learning and
distributed training, requires efficient techniques to analyze and optimize their
performance. Awan et al.[1] analyzed the communication and computational
performance of distributed AI applications, focusing on the efficiency of CPU
communication in multinode clusters using MPI. Their approach is centered
on detailed profiling of the communication workloads using high-performance
interconnects like InfiniBand. However, their method involves intensive, time-
consuming profiling processes that can be computationally expensive. In con-
trast, the application signature methodology provides a much faster analysis
by focusing on identifying phases and their recurrence, without requiring such
detailed profiling.

In application performance benchmarking, several frameworks target AI ap-
plications. Tartan [6] uses a multi-GPU benchmark suite, requiring selection of
a benchmark that approximates application behavior. Similarly, HPC AI500 [3]
evaluates HPC systems for AI workloads with benchmarks for deep learning. In
contrast, the signature models application behavior directly, predicting execution
time accurately without external benchmarks. It runs in a bounded time frame,
making it more efficient and precise. Unlike Tartan and HPC AI500, which rely
on selected benchmarks, the application signature focuses on the application’s
own performance characteristics, making it more adaptive and accurate.

3 IA Paralel Application Model

In distributed AI applications, workload is designed to be uniform as possible,
but data partitioning and dynamic training cause computational load variations
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Fig. 1. Logical Trace: Abstract view enabling phase identification.

between processes, leading to differences in executed instructions and challenges
in identifying similar phases. We present a methodology to adapt the PAS2P
model for detecting execution phases that exhibit similar computational char-
acteristics, despite the inherent differences in workloads across iterations, where
each iteration may present slightly different workloads due to the dynamic data
distribution. However, the current PAS2P methodology is designed for more
deterministic HPC applications. If one process executes a different number of
instructions in each iteration, this results in finding multiple phases, as each
slight variation is treated as a distinct pattern.

To address this issue, we modeled the PAS2P methodology by designing a
matching mechanism to detect phases with similar computational characteris-
tics, despite the differences in workload distribution. This allows us to group
phases that share common computational characteristics, even if the number of
instructions and CPU times differ slightly between processes. The result of this
adaptation is that the phases identified by our model can be used to efficiently
analyze performance without being influenced by an excessive number of phases.
This approach allows us to identify significant phases that impact performance.

The PAS2P methodology starts by instrumenting the application to extract
performance data, saved in trace files. After collecting traces, we generate a log-
ical trace that captures the application’s behavior, consisting of communication
and computation events. Events like MPI_Allgather and MPI_Allreduce are
logged with details such as event ID, data size, timestamp, computational time,
and instruction count. These events reveal how the application uses CPU and
communication resources across processes.

After collecting performance traces with PAS2P instrumentation, the next
step is to generate a logical trace that captures the application’s behavior. As
shown in Figure 1, this trace organizes MPI events by logical time, including
key operations like MPI_Allgather and MPI_Allreduce. It records details such
as communication size and instructions executed per event. Ordering events by
logical time creates an abstract performance model, facilitating the identification
of patterns or phases during analysis.

The challenge in analyzing the application lies in the variability of instruc-
tions executed by each process across iterations, due to factors like data parti-
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Fig. 2. More processes increase identified phases due to instruction count variations.
Table 1. DeepGalaxy Logical Trace segment with frequencies and SIMO values.

Tick Processes Frequency SIMO Tick Processes Frequency SIMO0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 6 7 6 7 4 6 7 7 0 50 20 6 6 6 5 6 5 7 7 0 48
1 7 6 7 6 6 5 7 7 0 51 21 6 6 5 6 5 6 5 7 0 47
2 6 5 6 6 6 5 7 6 0 47 22 6 5 6 6 6 6 5 7 0 48
3 6 6 6 6 4 5 7 6 0 46 23 7 5 6 6 6 6 7 7 0 50
4 6 6 6 5 4 5 7 6 0 45 24 6 6 5 5 6 6 7 6 0 47
5 6 6 6 5 5 6 7 6 0 47 25 6 6 5 5 6 6 7 6 0 48
6 6 6 6 5 5 5 7 6 0 46 26 6 6 5 5 6 6 5 7 0 46
7 7 7 6 7 5 5 7 7 0 51 27 6 6 5 5 6 5 6 6 0 46
8 7 6 6 7 5 5 7 7 0 50 28 6 6 5 5 5 5 6 6 0 44
9 5 5 6 6 8 8 8 8 0 54 29 7 5 7 5 6 5 7 7 0 49
10 7 8 8 8 8 8 8 8 0 63 30 7 5 6 6 5 6 7 7 0 48
11 5 5 5 5 6 7 6 6 0 45 31 7 5 7 6 7 6 7 7 0 52
12 5 6 5 6 6 7 6 6 0 47 32 7 5 7 5 7 5 7 7 0 50
13 5 6 5 5 5 6 7 6 0 46 33 7 5 7 5 7 6 7 7 0 51
14 5 6 5 6 5 6 7 6 0 46 34 8 8 8 7 8 7 8 8 0 62
15 6 6 5 5 6 7 6 6 0 47 35 8 7 8 7 6 5 6 6 0 53
16 5 6 5 6 6 6 5 5 0 44 36 8 5 8 8 8 7 8 8 0 60
17 6 7 6 6 5 6 6 7 0 49 ... ...
18 6 7 6 6 7 7 6 6 0 51
19 7 6 6 5 6 7 7 7 0 50

tioning and workload distribution. As processes receive different data amounts,
they execute varying instruction counts, making phase identification difficult.
Each process may behave differently depending on its data, leading to many
phases — a common issue in AI and deep learning models, where data and
workload distribution often fluctuate between iterations.

Current version of PAS2P compares the communication type, communication
size, and the number of instructions executed by different processes to identify
phases. However, due to the variability in instruction counts across iterations, the
conventional approach of using a distance metric to compare instruction counts
can result in the identification of numerous phases that are not recognized as
similar.

As the number of processes increases, the complexity of identifying phases
also increases, as shown in Figure 2. Each phase is represented by a segment
of events across all processes, and this distribution of events makes it harder to
identify similar phases. In this example, as more processes are added, PAS2P
struggles to group similar phases, especially when instruction counts vary. This
variability leads to the identification of more phases, resulting in a higher number
of phases being recognized, even when the phases may be functionally similar.
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Fig. 3. SIMO calculation for a DeepGalaxy trace. Grouping SIMO values into phases
and applying ±1 tolerance reduces phases from 15 to 7.

Once the problem was identified, as shown in Table 1, we use a segment of
the logical trace from the DeepGalaxy IA application with Horovod and eight
processes. The table focuses on the number of instructions executed by each
process at each tick. The challenge in identifying similar phases lies in how
PAS2P models computation. To address this, we model instruction counts by
their order of magnitude, considering segments similar if they share the same
order, even with slight variations. After analyzing the trace, we add a column to
specify repetitions (weights/frequencies) for each pattern. However, even using
the order of magnitude, we did not find similarities between phases, as each tick
represents a phase.

As we know, applications aim to balance the workload as evenly as possible
across processes, though this depends on the data being processed. In some
cases, certain processes must handle more data than others, and this balance can
change unpredictably with each iteration. However, we also know that the total
workload across all processes remains fixed. That is, the sum of the workload
across each process gives the total computational load, as shown by the following
equation (where Computei represents the workload of each process i, and N is
the number of processes):

Total Workload =

N∑
i=1

Computei

Building on this, what we observed is that by summing the instructions of a
specific phase across all processes, represented by SIMO (Sum of Instructions in
Magnitude Order), we can find the total computational load for each phase. As
shown in Table 1, the value of SIMO in the table begins to show similarity at
times, which helps to analyze the total computational load for the application.
The sum of instructions for each phase can give us a better understanding of the
workload distribution and its variability between different processes.
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Once we calculate the SIMO, as shown in Figure 3, the next step is to pro-
cess the results for phase identification. We first remove the columns related
to patterns from the previous figure, focusing on grouping patterns by instruc-
tion count similarity. In the Group By SIMO Phase ID column, we assign a
unique Phase ID to each set of equal SIMO values. Patterns belong to the same
phase if their SIMO values match across processes. In this DeepGalaxy trace, we
identified up to 16 distinct phases, showing patterns with equal computational
behavior.

However, our goal in performance analysis is not only to find equal patterns
but to identify phases meaningful in computational load. To refine this, we in-
troduce a ±1 tolerance for SIMO values in the Group By SIMO Tolerance ±1
Phase ID column. This tolerance groups patterns with slight instruction count
variations but similar computational load. Applying this reduces the number of
identified phases from 15 to 7, as shown in the Summary in Figure 3. Further-
more, PAS2P performs a classification of the identified phases, discarding those
that are considered insignificant in terms of performance: phases whose execution
time considering their weight constitutes less than 1% of whole execution.

4 Experimental Results

To validate our proposed methodology, we selected a set of AI applications that
utilize the Horovod framework. Among them is a ResNet50 model[2], trained for
image classification. Another application involves training a model to recognize
handwritten digits[5]. We also included the DeepGalaxy application, which sim-
ulates galaxy clusters, and trained using 4 to 16 processes. Additionally, we run
KMeans clustering, implemented with library mpi4py. These programs were run
on two AWS instance types: c7a.4xlarge, with 16 vCPUs, 32 GiB memory, up
to 12.5 Gbps network, and AMD EPYC 9R14 processor and c5.9xlarge, with 36
vCPUs, 72 GiB memory, 12 Gbps network, and Intel Xeon 8124M CPU.

We ran the application as shown in Table 2, presenting the results obtained
after applying the proposed model to DeepGalaxy with 4 processes. Each table
shows: the phase identifier, the CPU time per phase, and the frequency or weight,
indicating how many times each phase is executed. By multiplying the CPU time
by its weight, we can extrapolate the total computation time for each phase
and predict the application’s overall execution time. The final row displays the
Computational Total Time, summing all phase times multiplied by their weights.

Table 2. Phases obtained for DeepGalaxy 4 Processes

Phase CPU Time(Sec.) Frequency CPU Time * Frequency (Sec.)
1 0.000023 2,935 0.067495
2 0.000048 470,550 22.545653
3 0.000037 137,632 5.057869
4 0.000034 202,724 6.828968
5 0.000027 6,550 0.179555
6 0.000634 27,371 17.365881
7 0.000629 152 0.095631
8 0.001395 35 0.048816

Computational Total Time 52.189868
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Table 3. Phase Detection and Execution Time Comparison with the PAS2P Model.

Application
Number

of
processes

Previous
number

of
phases

Current
number

of
phases

Application
Execution

Time
(AET) (Sec.)

Percentage
of

AET in
Comm. Stage

Percentage
of

AET in
Compute Stage

Resnet 50 8 7,079 16 653.55 97.39 2.61
Resnet 50 16 23,993 35 854.83 97.30 2.70
MNIST 4 419 9 555.50 99.42 0.58
MNIST 8 5,335 15 307.73 99.62 0.38

DeepGalaxy 4 285 8 844.24 94.61 5.39
DeepGalaxy 8 4,929 16 581.54 95.33 4.67

K-Means 8 175 16 751.02 0.20 99.80
K-Means 16 526 28 535.23 0.40 99.60
pinn-mpi 16 7 4 642.435 2.81 97.19
Resnet 50 32 80,948 48 455.48 94.12 5.88
MNIST 32 49,855 37 302.79 94.01 5.99

DeepGalaxy 16 18,627 22 201.33 95.70 4.30
K-Means 64 1,258 28 1503.71 2.64 97.36
pinn-mpi 32 6 4 633.671 4.47 95.53
Resnet 50 64 43,558 37 285.349 96.47 3.53
MNIST 64 47,192 49 403.82 98.72 1.28
K-Means 128 1,575 30 1074.31 7.86 92.14
pinn-mpi 64 7 6 627.75 2.51 97.49

This predictive model condenses the application into a few key phases, enhancing
the efficiency of performance analysis.

To validate our methodology, we applied the same analysis to all applications
in this study. As shown in Table 3, we ran the applications with 4 to 16 processes
across 1 and 4 nodes. The table compares the number of phases detected by the
previous PAS2P version (“Previous Number of Phases”) and the proposed model
(“Current Number of Phases”). This reduction will allow for a quicker execution
of the signature as it will consist of a smaller set of phases.

Additionally, we performed an analysis on the reduced set of phases. Using
the phase information, we calculated the percentage of the total time that appli-
cations spent in communications, represented in the column “Percentage of AET
in Comm. Stage”, and the percentage of time spent in computation, shown in
the “Percentage of AET in Compute Stage” column. The results reveal that, for
applications using Horovod, most of the time is dedicated to communications,
while the time spent on computation is significantly lower. For k-means cluster-
ing, the compute stage dominates, accounting for nearly 99% of execution time.
This shows k-means is highly compute-intensive with minimal inter-process com-
munication. Thus, cloud instance optimization should prioritize computational
power over communication bandwidth, unlike AI training workloads. This insight
aids resource management by guiding instance selection based on application re-
liance on communication or CPU.

5 Conclusions and Future Works

In this work, we proposed extending the PAS2P methodology to model AI ap-
plications in HPC Cloud environments. By identifying phases, we enable per-
formance analysis without evaluating the entire application, helping understand
resource use and predict execution times. Our results show the methodology
effectively models application behavior, reducing phases to improve analysis ef-
ficiency and identify inefficiencies.
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By analyzing the computational load and communication patterns of each
phase, we can identify resource-intensive phases to guide cloud instance selec-
tion. For AI applications with Horovod, the communication stage consumes a
large part of execution time. The next step is to keep applying this method-
ology to understand resource usage and explain why applications spend more
time in communication or computation, aiding resource allocation and improv-
ing performance. As part of future work, we will analyze more AI applications
and explore the extension of this methodology to other communication libraries,
such as NVIDIA NCCL (NVIDIA Collective Communications Library). This will
further improve the methodology’s applicability to various AI workloads.
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