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Abstract. We propose a framework that enriches ontologies by lever-
aging competency questions and distant supervision. The process begins
by using an LLM to extract domain-relevant entities from the questions,
followed by incremental refinement through short definitions anchored to
a predefined dictionary. These entities and their hierarchies, along with
associated queries, are embedded using a fine-tuned Llama3.2:1b and fur-
ther processed through a self-attention mechanism to create unified rep-
resentations. A directed acyclic graph models the dependencies between
entities, with additional nodes derived from frequent co-occurrences in
queries. A Graph Attention Network (GAT) is used for stable link pre-
diction, discovering latent semantic relationships. These links are then
labeled with specific relation types using a fine-tuned RoBERTa module.
Evaluations using datasets from HPC training sessions and OpenAlex
abstracts show significant improvements in link prediction and ontology
enrichment over standard GAT and GraphSage baselines.

Keywords: Ontology Augmentation · Competency Questions · Distant
Supervision · Graph Embedding.

1 Introduction

Ontologies serve as crucial formal knowledge representations that bridge the gap
between human conceptual understanding and machine-processable data struc-
tures in modern AI systems. They provide a mathematically rigorous frame-
work for encoding domain expertise, ensuring semantic interoperability across
diverse, heterogeneous data by bridging them to a network of related concepts,
and answer complex queries that require connecting information across multiple
domains. Since they represent domain knowledge, ontologies are often used as a
part of a knowledge graph and enables better explainability in AI-based tasks
like answering natural language questions.

Many of the early ontologies (e.g., biomedical ontologies such as the Gene
Ontology) were constructed by domain experts via human processes, and were
regularly maintained and updated as new terminology and new uses emerged[10,
16], but such top-down development is slow, non-scalable, and insufficiently agile.
Data-driven methods that generate ontologies from text accelerate development
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but often sacrifice quality and ignore downstream user needs; we therefore re-
quire a bottom-up, logically consistent, vocabulary-aligned methodology that
can evolve with user demands. Recent advances in LLMs present new oppor-
tunities: several studies generate or augment ontologies directly from compe-
tency questions—manually or via rule-based techniques[6]—offering determin-
istic consistency yet limited adaptability, while transformer-based approaches
cannot fully capture CQ variability[4]; other work fine-tunes GPT-3 to trans-
late natural language into OWL Functional Syntax[11] or leverages zero- and
few-shot learning for ontology alignment[2, 8]. Although these enhance expres-
siveness and matching, our approach differs by integrating extracted CQ topics
with distant supervision and deep-learning-based structural prediction to deliver
a more automated, scalable ontology augmentation.

We represent user demands via a set of competency questions (CQs), where
CQs are natural-language questions that the completed ontology should answer,
which have been shown to help resolve ontology defects by introducing entities
and relationships the ontology does not capture[3]. We adopt a setting where a
consistent but incomplete, task-agnostic ontology exists for some domain, and a
CQ bank, obtained from prospective users, is used to computationally extend it
while maintaining our design criteria.

In this paper, we investigate how generative models—specifically LLMs, which
hold great promise in transfer learning[1] can be effectively used in bottom-up
ontology construction using CQs as a guideline (cf.[13]). We propose a framework
that leverages an LLM to extract key domain-relevant entities and their rela-
tionships from CQs to enhance an existing ontology, systematically addressing
both content and structural heterogeneity. Finally, a GAT integrates the explicit
links provided by CQs and infers latent semantic relationships between entities,
thereby augmenting the expressiveness of the ontology. Specifically, this paper
makes the following contributions to CQ-driven ontology augmentation.

– We formalize the problem of ontology augmentation by incorporating com-
petency questions, addressing both content and structural heterogeneity.

– We propose an innovative framework that utilizes LLMs for entity extraction
and recursive definition generation, coupled with a multi-head self-attention
mechanism to fuse multiple feature modalities.

– We design a comprehensive graph-based model that integrates the question-
entity, entity-category, and inferred entity-entity relationships, thus enrich-
ing the ontology’s expressiveness.

– We empirically demonstrate the effectiveness of our approach on real-world
datasets, showing notable improvements in ontology coverage and link pre-
diction accuracy.

2 Our Approach

Our automated ontology construction process has two inputs –– an existing on-
tology O that needs to be augmented and a set of competency questions Q
obtained from users. We perform a semantic analysis of each question q ∈ Q,
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together with V (O), the verbalized version of the ontology. The final ontol-
ogy is generated in a 3-stage process. In the Entity Extraction and Definition
stage (Section2.1), semantic entities are extracted from Q∪V (O) and composed
into an initial subClassOfDAG. Next, in the Embedding Generation and Fusion
stage (Section2.2), each entity’s label, hierarchy path, and definition embed-
dings are combined via self-attention into a holistic representation. Finally, in
the Graph-based Link Prediction and Labeling stage (Section2.3), a Graph At-
tention Network identifies new relations and a classifier assigns each predicted
edge its relation type.

Fig. 1. The primary architecture of the system

2.1 Entity Extraction and Definition

Our process begins with two inputs—an existing ontology O and a set of compe-
tency questions Q. We first verbalize O into natural language using an ontology
verbalizer[15] and concatenate that text with each q ∈ Q. An LLM, prompted
via few-shot examples, parses this combined text to extract candidate entities
(noun phrases) along with their hierarchical category paths up to the root node
Entity. For each candidate:

– We consult a distant-supervision dictionary of known definitions. If found,
the entity is marked “grounded.”

– Otherwise, the LLM is prompted to generate a concise, one-sentence defini-
tion (cf.[13]). Any new terms in that definition are recursively extracted and
resolved until all entities map to dictionary entries.

– As post-processing, we remove cycles, duplicate definitions, and acronyms
to ensure the result is a clean subClassOf DAG where vertices are entities
and edges capture dependency relationships from the definition process.

2.2 Embedding Generation and Fusion

Each entity e is represented by three facets—its label n, its hierarchy path
C(e), and its definition d(e). We fine-tune a Llama3.2-1b model via LoRA [9]
to encode each facet into vectors vn, vC , and vd, drawing training pairs from
co-occurrence of entities in OpenAlex abstracts, with positive pairs share a CQ;
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negative pairs have their nearest common ancestor at least three levels above.
Rather than using these vectors independently, we stack them into a matrix and
apply a single self-attention layer, whose parameters are trained using the same
distant-supervision data mentioned in the earlier encoding stages.

Although there are well-known graph-only embedding approaches, including
RDF2Vec[14], OWL2Vec*[5], TransE/DistMult variants. They rely exclusively
on triple walks or translation objectives and ignore the rich textual and hier-
archical signals in our augmented ontology. In contrast, we obtain embeddings
that capture intrinsic semantics, taxonomic context, and relational differences
by fine-tuning Llama3.2:1b on our domain corpus and competency questions.

2.3 Graph-based Link Prediction and Labeling

We construct an augmented graph G′ = (V,E ∪ Er) by adding co-occurrence
edges

Er = {(ei, ej) | Q(ei) ∩Q(ej) ̸= ∅}.
A Graph Attention Network (GAT) then propagates each ve over its neighbor-
hood:

αij = softmaxj
(
LeakyReLU(a⊤[Wvei∥Wvej ])

)
, v′

ei = σ
( ∑
ej∈N (ei)

αij Wvej

)
.

An MLP over [v′
ei∥v

′
ej ] then scores link existence. For each predicted link, we

form an input by concatenating the text of ei, ej , and their shared question qij ,
and classify it into one of 21 relation types, combining existing HPC labels with
a few new predicates via a lightweight fine-tuned classifier.

3 Experiments

3.1 Experiment Design

Datasets Our primary dataset for ontology augmentation consists of 1,127
competency questions collected from SDSC HPC training sessions. These ques-
tions are structured according to the HPC-fair ontology to model relationships
within the HPC domain. After extracting the data using GPT-4o, we applied
rigorous post-processing steps refining the dataset into a well-structured graph
representation.

To fine-tune the LLM for embedding generation, we supplemented our dataset
with additional data from a publication resource, OpenAlex. The data collection
process began by extracting pairs of entities from the graph constructed using
competency questions. We classified entity pairs as relevant if they originated
from the same competency question and non-relevant if they shared a common
ancestor at a hierarchical distance of three steps.

For each entity pair, we searched for paper abstracts where both keywords
co-occurred. In practice, we randomly selected 200 entities from the graph, col-
lecting k1 (e.g., 3) relevant and an equal number of non-relevant associated
words. For each pair of words, we retrieved n (10 in our experiments) abstracts
of articles from OpenAlex.
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Table 1. Dataset Statistics

Competency Questions Dataset
Questions 1,127
Entities 9,590
Categories 4,954
Question–Entity edges 28,521
Entity–Category edges 17,492
Category–Category edges 9,133

OpenAlex Paper Abstracts
Word pairs 1,200
Paper abstracts 12,000

3.2 Link Prediction

Which pair of entities is related? To evaluate the effectiveness of our ontology in
capturing semantic relationships between entities, we compare our results with
pure GAT and GraphSage [7] without self-attention embedding fusion.

The GAT we are using here is trained on the same data as the distant su-
pervision employed in the previous steps. The training labels are derived from
the following logic:

– Two entities are related if they share at least one competency question,
– Two entities are not-related if their closest common ancestor is at least three

steps above either node in the hierarchy.

Instead of random sampling part of the graph as training set and the rest
as validation and testing set, we consider the case of incremental ontology aug-
mentation. The original graph is used as the training set, while we split a subset
of competency questions and corresponding entities as the testing set. Positive
samples are selected using the same logic as training labels, and an equal number
of negative samples are selected using only the new data. The training-test ratio
is set to 8:2.

Table 2. Link Prediction Performance Comparison

Method Accuracy F1 AUC
Logistic Regression 0.8665 0.8712 0.8735
GAT 0.9232 0.9235 0.9657
GraphSage 0.9295 0.9294 0.9681
Ours 0.9653 0.9659 0.9830

The result in Table 2 indicates that our method outperforms both conven-
tional GAT and GraphSage models. By incorporating a self-attention layer, our
model can selectively integrate and weigh the diverse information provided by
the augmented embeddings, capturing subtle semantic nuances and relationships
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essential for link prediction. It is worth noting that even a Logistic Regressor
can reach 0.8665 accuracy, because the embeddings already capture semantic
and structural information and separate the dataset, making it easier for simple
models to perform well. We explore this further in the Ablation Study section.

3.3 Label Prediction

Which relationship does this edge belong to? In this subsection, we solved this
problem by finetuning a RoBERTa model. We prepare a dataset comprising
every entity pair identified by the GAT module, each record containing the pair,
their shared competency questions, and the target relationship. Using few-shot
GPT-4o prompting, we generate up to three candidate labels per pair (3,098
labels over 16,455 pairs), embed them with our fine-tuned Llama3.2:1b, cluster
by cosine similarity, and manually refine to 27 final labels.

After finetuning, the model achieved an accuracy of 0.7356, precision of
0.7222, recall of 0.7356, and F1 score of 0.7207.

The performance of relationship label classifiers is suboptimal as it shows
patterns of errors. The errors arise from contextual ambiguity, where multiple
labels may apply, and confusion among semantically similar relations (e.g., cau-
sation vs. usage). To enhance accuracy, it is crucial to create a dataset that in-
cludes additional contextual details and competency questions to offer a deeper
understanding of connections between entities.

4 Discussion

4.1 Embedding Component Contribution

The results clearly show that all these factors, intrinsic, hierarchy, and definition,
have a positive impact on total performance, and integration of these provides
the best results. In Table 3, we observe that when each of these factors is taken in
isolation, intrinsic, hierarchy, and definition give the same results. But combining
three components with a self-attention mechanism resulted in better results. For
example, hierarchy and definition as a pair provide a higher degree of precision
and F1 scores than other pairs of two factors, implying that these factors support
each other well.

4.2 Ablation Study

Embeddings play an important role in our ontology augmentation framework.
As shown in Table 2, a simple logistic regressor with finetuned llama3.2:1b can
already reach 0.8665 accuracy. In this ablation study, we employed three different
encodings to evaluate their performance using our model. The result of link
prediction is shown in Fig 2. From this figure:

– The finetuned Llama3.2:1b performs better than vanilla Llama3.2:1b, indi-
cating the finetune process can capture domain-specific differences between
entities.
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Table 3. Performance Metrics for Different Component Combinations

Component Combination Accuracy F1 Score AUC
Intrinsic 0.9295 0.9294 0.9681
Hierarchy 0.9317 0.9318 0.9761
Definition 0.9281 0.9293 0.9765
Intrinsic + Hierarchy 0.9511 0.9521 0.9785
Intrinsic + Definition 0.9461 0.9475 0.9767
Hierarchy + Definition 0.9598 0.9603 0.9813
All Three (Intrinsic, Hierarchy, Definition) 0.9653 0.9659 0.9830

– Finetuned and vanilla Llama3.2:1b outperforms traditional embedding mod-
els like word2vec[12], indicating LLM has a deeper understanding of the
underlying structure in our augmented ontology.
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Fig. 2. Performance of various embedding models

5 Conclusion

This paper proposes a new paradigm for competency question based ontology
enrichment using large language models, followed by high-level embedding fu-
sion using a self-attention mechanism and graph attention network for robust
link prediction. Our experiments demonstrate that the proposed method out-
performs conventional methods such as GAT and GraphSage with improved ac-
curacy and link prediction results. Despite some challenges in relationship label
prediction, largely due to inherent vagueness and fine-grained semantic overlap,
promising results indicate the potential to integrate deep learning and graph-
based approaches to enhance the semantic density and structural coherence of
ontologies. Future work will focus on enhancing the label prediction process by
leveraging more contextual information, with the ultimate goal of further ad-
vancing the state-of-the-art in ontology enrichment.
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