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Abstract. Genomic data is growing rapidly due to the high demand
for precision medicine. Consequently, efficient genome compression algo-
rithms are needed to reduce storage usage in an acceptable response time.
This paper introduces HybridHRCM, a hybrid MPI/OpenMP algorithm
that harnesses the power of multicore clusters to compress a collection
of genomic sequences. We compared our proposal with MtHRCM-opt,
its multi-threaded OpenMP counterpart that is suitable for single-node
multicore systems. Experimental results demonstrate that HybridHRCM
enhances the scalability of MtHRCM-opt for large test collections when
using the same number of cores but in a distributed way, while behaves
similarly for small test collections. Furthermore, the results reveal that
HybridHRCM still achieving good performance when adding more nodes,
for all collections.
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1 Introduction

Genomic data is growing rapidly due to the high demand for precision medicine.
Consequently, efficient lossless compressors for genomic sequences are needed to
reduce storage usage in an acceptable response time [1, 2].

In particular, such lossless compression algorithms are classified into two cat-
egories, depending on whether they use references during compression or not:
(i) reference-free algorithms compress the target sequence using only its inter-
nal characteristics; (ii) reference-based algorithms use one or more reference se-
quences to compress the target sequence, leveraging the high similarity between
sequences of the same species [3-5]. Moreover, some reference-based methods
allow compressing collections of sequences. Compared to compressing each se-
quence of the collection individually, batch compression carries out certain steps
of the process only once and obtains a higher compression ratio [6, 7].

Related to the previously mentioned, HRCM (Hybrid Referential Compres-
sion Method) [7] is a compression algorithm for collections of genomes in FASTA
format, reference-based and lossless. For each to-be-compressed sequence, the al-
gorithm performs a first matching to find all the segments that are included in the
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reference sequence. As a result, a compressed sequence is obtained, which con-
tains information about matches and mismatches. Then, first-matching results
go through a second matching, where some previously compressed sequences are
taken as references (this introduces a data dependency). These second-matching
results are appended to a file. After all sequences were processed, the file is
compressed with 7-zip.

In order to reduce compression time, the same authors proposed MtHRCM
[8], a multi-threaded implementation of HRCM. First, to satisfy the data depen-
dency, the algorithm sequentially solves all the sequences that will be references
during the second matching. Then, it uses threads to compress the remaining
sequences in parallel. Each compressed output is saved in a separate interme-
diate file. Finally, the intermediate files are written sequentially (in order) into
the final output file, which is then compressed with 7-zip. Although MtHRCM
improves the performance of HRCM, it achieves a poor speedup and does not
scale well due to its sequential parts and the contention at the I/O system.

Then, we proposed MtHRCM-opt [9], an optimized version of MtHRCM
that reduces its sequential component. The experimental results showed that
MtHRCM-opt improves the performance of MtHRCM. Also, they revealed that
MtHRCM-opt scales well when increasing the number of threads/cores for smaller
test collections, but the high amount of simultaneous I/0 requests to disk still
limits the scalability for larger test collections.

In summary, the aforementioned works focus on compressing genomic se-
quence collections on a single multicore machine. Single node parallelism is
limited by the number of cores available and the concurrent access to shared
resources (e.g. memory and disk) that may cause long latencies. In contrast,
distributed parallelism allows improving the performance of some applications
by leveraging the resources of multiple computers (nodes) in a cluster.

In this paper, we introduce HybridHRCM, a hybrid MPI/OpenMP algorithm
based on HRCM that harnesses the power of multicore clusters to compress
a collection of genomic sequences. Experimental results demonstrate that Hy-
bridHRCM enhances the scalability of MtHRCM-opt for large test collections
when using the same number of cores but in a distributed way, while behaves
similarly for small test collections (as expected). Furthermore, the results reveal
that HybridHRCM still achieving good performance when adding more nodes
(resources), for all collections.

The rest of the paper is organized as follows. Section 2 summarizes the HRCM
and MtHRCM-opt algorithms. Section 3 describes our proposal. Section 4 shows
our experimental results. Finally, Section 5 presents the main conclusions and
future research.

2 Background

This section describes the HRCM and MtHRCM-opt compression algorithms.
Both algorithms compress a collection of FASTA sequences with a lossless reference-
based approach.
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2.1 HRCM Algorithm

HRCM [7] consists of three stages: startup, matching and encoding.

The startup extracts the reference sequence, that is, it keeps all the nu-
cleotides (A, C, G, T) after converting them to uppercase. Then, it constructs a
hash table based on the extracted reference sequence, which stores for each pos-
sible k-mer (substring of k nucleotides) all its locations in the reference sequence
or -1 if it does not exist. This table is used in the matching stage.

Next, the matching applies these steps to each to-be-compressed sequence:

— Extraction: similar to the extraction step of the startup stage.

— First-level matching: this step iterates over the extracted sequence using a
sliding window of length k. When the k-mer currently in the window appears
in the reference sequence, the position and length of the longest match are
recorded in the results. Otherwise, the first base of the k-mer is recorded as a
mismatched character. Then, the window is slided. This iteration continues
until reaching the end of the sequence.

— Hash table construction: only if the sequence will be a reference during the
second matching, the results of the previous step along with a hash table
built from their entities (taken in pairs) are stored in memory. These data
structures are used in the next step. The maximum number of references for
the second-level compression is configurable (parameter L).

— Second-level matching: the results of the first-level matching are compressed,
using a sliding window of length 2 and taking as references the first m already
compressed sequences, where m = min(i— 1, L) and ¢ is the index of the cur-
rent sequence. From the entities in the window, the longest match among
all references is found and the information about the matched segment (se-
quence id, position, length) is appended to the output file. If a mismatch
occurs, the first entity in the window is appended to the output file.

Finally, the encoding compresses the output file with 7-zip.

2.2 MtHRCM-opt Algorithm

MtHRCM-opt [9] uses multiple threads to compress the collection of sequences.

First, the main thread executes the startup stage. Then, it creates a pool of
threads to perform the matching stage as follows.

Each thread dynamically picks the next sequence from the collection to be
processed. The thread completes the first-level matching, which has no data
dependence. Then, it waits for the required data structures before executing
the second-level matching (i.e., both the first-level matching results and the
associated hash table of the corresponding reference sequences). Specifically,
let 7 be the index of the current sequence, the thread must wait for the data
structures of sequences with index between 1 and min(i — 1, L) to be ready.
Once this condition is met, the thread completes the second-level matching and
stores the results in a separate intermediate file.

After all sequences were processed, the main thread encodes all the interme-
diate files with 7-zip, resulting in a single compressed file.
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3 HybridHRCM Algorithm

HybridHRCM harnesses the power of multicore clusters to compress a collection
of sequences. In particular, it relies on hybrid MPI/OpenMP programming to
create a single process per machine/node with multiple threads.

All nodes collaboratively compress the collection of genomic sequences in
stages. Each node is responsible for processing a subset of sequences that will be
second-level references and a subset of the remaining sequences!. Let P be the
number of nodes, n be the number of sequences in the collection and L be the
maximum number of references for the second-level compression, the size of the
first subset is % and the size of the second subset is %.

First, the main thread on each node performs the startup stage, which ex-
tracts the reference sequence and constructs the associated hash table. The time
of this operation is negligible and its parallelization has no practical sense, for
this reason the computation is replicated on each node.

In the first compression stage, intra-node threads perform the first-level
matching of the sequences of the first subset (i.e. those that are second-level
references). This problem is data parallel, since it only uses the information ob-
tained in the startup. Each thread dynamically picks the next sequence from the
subset, extracts it, and then computes and stores the results of the first-level
matching and the associated hash table. Then, the thread communicates both
data structures to the other nodes through message passing. This information is
necessary for the following stages. Message reception is handled by a dedicated
receiver thread on each node, which runs concurrently with the worker threads.

The second compression stage will begin once the node has received all the
data structures sent by the other nodes. Having such information allows indepen-
dent processing. At this stage, intra-node threads complete the processing of the
sequences of the first subset. Each thread dynamically picks the next sequence
from the subset, computes the second-level matching and stores the results in
an independent intermediate file.

In the third compression stage, intra-node threads compress the sequences
of the second subset. Each thread dynamically picks sequences, extracts each
one and applies the first and second-level matching, and stores the results in an
independent intermediate file.

Finally, the master process executes the encoding stage, which compresses
all the intermediate files with 7-zip, resulting in a single file. To do this, it must
access all the generated intermediate files. Consequently, each node is responsible
for leaving the generated intermediate files in a location accessible by the master
process (either on its local disk or on a storage).

Notice that communication time does not impact performance since the com-
municated data are hash tables of limited size (~8MB each) and compressed
results with high compression ratio.

! The algorithm assumes that each node can access the files (sequences) of both as-
signed subsets as well as the reference sequence file. That is, these files can be stored
locally on disk or can be obtained from a storage.
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4 Experimental Results

Our experimental platform is a cluster of multicore nodes. Each node is composed
of two Intel Xeon E5-2695 v4 processors (36 cores in total), 128GB RAM and
a SAS disk. Hyper-Threading and Turbo Boost were disabled. All nodes are
connected via 1Gb Ethernet.

Tests considered 1100 commonly used human genomes [9]: 1092 are extracted
from the 1000 Genome Project; 5 are the UCSC HG16, HG17, HG18, HG19
and HG38 genomes; 2 are the Korean genomes KOREF _20090131 and KO-
REF_20090224; and the last is the HuRef genome. We used the UCSC HG13
genome as reference. Human genomes contain 24 chromosomes (identified as 1,
2, .., 22, X, Y) and have a size of ~3000 MB each.

Specifically, we formed 24 test collections in total, one for each chromosome.
Each test collection includes the 1100 same-numbered chromosomes from differ-
ent individuals, and will be compressed against the same-numbered chromosome
of HG13. This grouping allows the compressor to leverage the similarity between
the to-be-compressed sequences and the reference. It is worth mentioning that:
in general, the smaller the chromosome ID, the larger the collection size; each
test collection includes sequences of similar size (near to the average); larger test
collections are composed of larger sequences, and smaller test collections have
smaller sequences. Hence, the aforementioned grouping allows us to evaluate the
scalability of the algorithm.

The maximum number of references for the second-level matching (L) was
set to 275, which corresponds to 25 percent of the to-be-compressed collection.

To prove the effectiveness of our proposal, we ran HRCM (sequential code),
MtHRCM-opt (multi-threaded code) and HybridHRCM (hybrid MPI/ OpenMP
code) on different system configurations. In the former two cases, all the to-be-
compressed sequences are stored on the local disk of the single node used. In
the case of the hybrid algorithm, each cluster node stores on its local disk the
to-be-compressed-sequences of its assigned subsets.

From the experimental results, we first confirmed that the three algorithms
achieve the same compression efficiency. That is, for the same to-be compressed
collection and the same value of L, all the algorithms obtain the same output
(regardless of the system configuration used). This behavior is expected since
their compression methodology is identical. In general, all test collections (a
total of 3258684 MB or ~3 TB) were compressed to 1318 MB.

Next, we verify the performance behavior of our algorithm, measured in terms
of Speedup (M) Figure 1 compares the Speedup of MtHRCM-opt

Timepar_algorithm

and HybridHRCM, for all chromosomes, with 4, 8, 16 and 32 threads/cores in
total. In HybridHRCM threads are distributed equally between two nodes (i.e.
2 nodes x 2 cores, 2 nodes x 4 cores, 2 nodes x 8 cores, 2 nodes x 16 cores). The
results show that, for 4 and 8 threads, the Speedup obtained by both algorithms
is similar for all chromosomes. However, for 16 and 32 threads, HybridHRCM
achieves better Speedup than MtHRCM-opt for chromosomes {1..12, X} (first
group), and similar Speedup for the rest of the chromosomes {13..22,Y} (second

group).
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—MtHRCM-opt 4 cores —HybridHRCM 4 cores —MtHRCM-opt 8 cores —HybridHRCM 8 cores

(a) 4 cores (b) 8 cores

~—MtHRCM-opt 16 cores  —HybridHRCM 16 cores —MtHRCM-opt 32 cores  —HybridHRCM 32 cores

(c) 16 cores (d) 32 cores
Fig. 1: Speedup comparison between MtHRCM-opt (1 node) and HybridHRCM
(2 nodes), for different number of threads/cores.

To explain this behavior, we refer to our previous work [9] where we observed
that the main source of overhead in MtHRCM-opt is disk contention, which
limits the scalability of large collections (first group). Disk I/O is performed
to extract the information of each sequence from file and write the compressed
sequences to disk. For a fixed test collection (chromosome), as more threads are
involved in compression, more sequences are processed in parallel, therefore there
will be more I/O requests that the disk must serve simultaneously. This causes
long latencies that affect performance. This overhead is even higher for large
collections (first group) since they require more I/O operations. HybridHRCM
distributes the to-be-compressed sequences of the collection among nodes. For
this reason, the amount of work per node is lower, which implies a lower number
of I/O requests to be served simultaneously (regardless of the number of threads
used). This results in a performance gain, which is evident for large collections
(first group) and a large number of threads.

It should be noted that, for the remaining cases, MtHRCM-opt shows good
performance and is not significantly affected by disk contention. Therefore,
HybridHRCM obtains similar performance when distributing the work among
nodes, using the same number of total cores.

Then, we investigate the scalability of HybridHRCM when increasing the
number of threads/cores per node. Figure 2 shows the Speedup of HybridHRCM,
for all chromosomes, with 2 and 3 nodes, and 2, 4, 8, 16 and 32 threads/cores per
node. The results in both cases reveal that, for all chromosomes, the Speedup
improves as the number of cores per node increases. Also, they display that the
best performance is obtained when using 32 cores per node.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_22 |



https://dx.doi.org/10.1007/978-3-031-97635-3_22
https://dx.doi.org/10.1007/978-3-031-97635-3_22

—a—HybridHRCM 2nx2c —=-HybridHRCM 2nxdc —e-HybridHRCM 2nx8c —a—HybridHRCM 3nx2c -#-HybridHRCM 3nx4c —e-HybridHRCM 3nx8c
—%-HybridHRCM 2nx16¢ —+~HybridHRCM 2nx32¢ ~%HybridHRCM 3nx16¢c —-HybridHRCM 3nx32c
60 60

(a) 2 Nodes (b) 3 Nodes
Fig. 2: Speedup of HybridHRCM with 2 and 3 nodes (n) when increasing the
number of threads/cores per node (c).

~a~MtHRCM-opt 1nx32c  —#~HybridHRCM 2nx32c ~ —e—HybridHRCM 3nx32c

Fig.3: Speedup of MtHRCM-opt (1 node), HybridHRCM (2 nodes) and Hy-
bridHRCM (3 nodes), with 32 threads/cores per node

In addition, we study the scalability of the algorithm when increasing the
number of nodes. Figure 3 compares the Speedup of MtHRCM-opt (1 node),
HybridHRCM (2 nodes) and HybridHRCM (3 nodes), with 32 threads/cores per
node, since this thread configuration gave the best performance, as previously
presented. Note that adding a node involves adding 32 processing cores (i.e.,
the total number of cores with 1, 2 and 3 nodes is 32, 64 and 96 respectively).
For all chromosomes, the best performance is achieved with 3 nodes. For smaller
test collections (higher ID), the performance does not increase significantly when
scaling from 2 to 3 nodes. This is because smaller test collections are smaller
in size and thus their compression time is lower, so as more cores are used, the

overhead due to parallelism affects more severely the total time (Amdahl’s law).

Finally, we analyze the Overall Throughput (“ngn”;f zs:g:zz:i’zz;ggf)) of

the algorithms to provide a more concrete interpretation of the presented results.
Throughput values were calculated considering the total size and the total com-
pression time of all test collections (24 chromosomes), for each algorithm. HRCM
(sequential code) achieves a throughput of 16.19 MB/s, MtHRCM-opt (1 node,
32 threads) obtains 144.31 MB/s, while HybridHRCM reaches 480.59 MB/s and
740.63 MB/s (with 2 and 3 nodes, 32 threads per node). As can be derived from
these results, on our platform HRCM compresses all data (~3258684 MB) in ~56
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hours, MtHRCM-opt takes ~6h 15m, while HybridHRCM completes the com-
pression in ~1h 53m with 2 nodes and ~1h 13m with 3 nodes. In other terms,
per human genome (~3000 MB) HRCM uses about 183s, MtHRCM-opt uses
~21s, while HybridHRCM uses ~6s and ~4s, with 2 and 3 nodes respectively.

5 Conclusions and Future Work

This paper introduced HybridHRCM, a hybrid MPI/OpenMP genomic data
compressor that harnesses the power of multicore clusters.

We compared HybridHRCM with MtHRCM-opt, its OpenMP counterpart
for single-node systems, when using the same number of cores but in a distributed
way. Experimental results show that the performance of HybridHRCM is more
stable than that of MtHRCM-opt when varying the to-be compressed collection.
For large test collections and a large number of cores, HybridHRCM outperforms
MtHRCM-opt. For the rest of the cases, both algorithms behave similarly (as
expected). Hence, HybridHRCM enhances the scalability of MtHRCM-opt.

We further studied the scalability of HybridHRCM when increasing the num-
ber of nodes (with 32 threads per node). As a main concrete result, MtHRCM-opt
(1 node) compressed the whole 1100 human genomes in ~6h 15m, HybridHRCM
(2 nodes) in ~1h 53m and HybridHRCM (3 nodes) in ~1h 13m. Consequently,
distributed computing and multicore clusters enable faster compression times
for large genomic data.

In future, we plan to compare HybridHRCM with HadoopHRCM (a version
of HRCM based on Hadoop MapReduce) and their advantages/disadvantages.
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