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Abstract. This research introduces a new technique for reduced-cost electromag-

netic (EM)-driven multi-objective antenna optimization. Our approach employs 

artificial neural networks (ANNs) to build a surrogate model of antenna fre-

quency characteristics, acting as a fast predictor providing multiple candidate Pa-

reto-optimal solutions per iteration. The surrogate is refined within a machine-

learning framework that leverages accumulated EM simulation data. Computa-

tional efficiency is enhanced by incorporating variable-fidelity EM simulations. 

Verification experiments underscrore competitive performance of our method, 

which requires only two hundred high-resolution EM analyses to complete the 

MO process. This represents 40% acceleration due to using variable-fidelity 

models and 90% speedup over traditional single-model surrogate-assisted meth-

ods. Our method is also shown competitive concerning design quality. 

Keywords: Computer-aided design, antenna engineering, multi-objective opti-

mization, machine learning, EM simulation, variable-fidelity models. 

1 Introduction 

Antennas belong to critical building blocks of wireless communication systems [1], 

[2]. Satisfying strict performance demands often results in complex structures requiring 

accurate electromagnetic (EM) analysis for reliable characterization, which is compu-

tationally costly. Furthermore, antenna development must balance multiple objectives: 

practical designs must establish trade-offs between different goals. Identifying these 

compromise solutions necessitates multi-objective optimization (MO) [3]. Yet, major-

ity of existing procedures are limited to scalar cost functions [4], necessitating objective 

aggregation to enable multi-objective optimization (MO) [5].  

Extensive data concerning trade-off solutions, normally generated as Pareto sets [6], is 

of high practical value. Predominant MO tools are bio-inspired algorithms that render the 

complete family of Pareto-optimal solutions in one algorithm execution. Notwithstanding, 

their applicability to handling EM simulation models is impeded by exceptionally poor cost 

efficiency. Practical EM-driven MO is often accomplished using surrogate modeling meth-

ods [7]. Therein, most computations are delegated to a fast replacement model. Popular 

modeling techniques include kriging, neural networks, and Gaussian process regression [8], 

[9]. The surrogate can be constructed beforehand [10] or iteratively during the optimization 

run, as in the machine learning (ML) frameworks [11]. The candidate designs identified by 
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optimizing the surrogate are validated through EM analysis; the acquired EM data is em-

ployed to refine the metamodel. The work [12] provides a review of recent machine learning 

approaches to MO of antennas. The bottleneck of surrogate-based procedures is building 

the data-driven model. It is challenging in higher-dimensional spaces or if the spatial extent 

of the search space is vast. Domain confinement enables addressing dimensionality-related 

issues. One way is to identify the extreme non-dominated solutions (optimized for individ-

ual objectives) and constrain the domain to the smallest interval encapsulating these designs 

[13]. Constructing the model in the region encompassing high-quality designs, e.g., deter-

mined using pre-screening, is another option [14].  

This study suggests a novel approach to improved-efficacy antenna MO. Our meth-

odology is an ML algorithm utilizing an artificial neural network (ANN) surrogate. 

Multiple infill points are rendered in each iteration. The EM data acquired at the candi-

date designs is used to refine the metamodel. Reduction of the running costs is achieved 

by utilizing variable-fidelity EM analysis. Extensive verification reveals superior per-

formance of the presented MO over benchmark methodologies. The typical cost of our 

algorithm corresponds to about 200 high-fidelity EM simulations. It also generates 

higher-quality Pareto sets compared to the benchmark regarding spatial extent and the 

Pareto dominance relation. The original contributions of this research include: (i) the 

development of an ML procedure employing ANN surrogates for high-efficacy MO of 

antennas, (ii) enhancing the cost efficiency of the search by incorporating multi-reso-

lution EM analysis, (iii) and (iii) the implementation of the entire MO framework and 

demonstrating its performance using challenging test cases. 

2 Multi-Criterial Design by Machine Learning 

This part of the paper elaborates on the proposed MO algorithm. Problem statement 

is followed by an outline of the multi-fidelity EM models, the ANN surrogate, and a 

description of the machine-learning based MO procedure.  

2.1 Problem Statement. Variable-Resolution EM Models 

Let  be a vector of design goals, all to be minimized, 

where  represents decision variables. Multi-objective optimization (MO) 

is understood as finding the Pareto set, a discrete representation of the Pareto front XP 

containing all globally non-dominated designs w.r.t. the dominance relation [15]. The 

designs in XP are the best available compromises between the objectives of interest.  

MO tasks are normally solved using bio-inspired algorithms, which is rarely an option 

for EM-driven design due to high computational costs. The method proposed in here ad-

dresses these issues by incorporating ML, simultaneous rendition of multiple candidate 

solutions, and variable-resolution EM simulations. Design procedures typically involve a 

high-fidelity EM model Rf(x) that ensures sufficient reliability in evaluating antenna char-

acteristics. To expedite the process we employ a range of lower-fidelity models , 

where L is the control parameter governing the discretization density of the antenna under 

design. The lowest-fidelity model, , is set up to ensure that the EM sim-

ulation outputs render all relevant features of the antenna responses, whereas 

 is set to ensure sufficient reliability (as per designer’s requirements).  
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2.2 Neural Network Surrogates 

The primary surrogate model used by the proposed MO procedure is an artificial 

neural network (ANN). The first model is constructed using Ninit random samples xB
(j), 

j = 1, …, Ninit, allocated by Latin Hypercube Sampling (LHS), and EM simulation out-

comes . The ANN used is a multi-layer perceptron [16] with two hidden layers 

(ten neurons each), and a sigmoid activation function. The model is trained using the 

Levenberg-Marquardt algorithm [16]. The model’s inputs are design variables x; the 

outputs are frequency characteristics (e.g., |S11| or gain vs. frequency), cf. Fig. 1. 

2.3 MO by Machine Learning  

In this study, the MO process is iterative. In each iteration, the Pareto set is approxi-

mated by optimizing the current ANN metamodel with the help of a multi-objective evo-

lutionary algorithm (MOEA) with floating-point representation, fitness sharing with 

adaptively adjusted niche size, a combination of intermediate and arithmetic crossover, 

multi-point elitism, and a termination condition based on a sufficient reduction of newly 

created Pareto-optimal solutions [17]. The population size is set to NP = 200, crossover 

and mutation probabilities are . 

The candidates are extracted from the current Pareto set generated using MOEA. The 

EM data is inserted to the training set to refine the surrogate. The infill points 

, are chosen to be possibly close to the target levels 

 of the second objective, where 

 decide the span of the Pareto front (Ninfill = 10). Enhancing the cost effi-

ciency is realized by employing variable-fidelity EM analysis. The initial metamodel is 

built using the lowest-fidelity data (Lmin). During the process, the resolution is enlarged to 

Lmax to ensure dependability. The resolution  in the ith iteration is determined as 
 

 
 

 
Fig. 1. The architecture of the ANN surrogate model utilized in this study is a multi-layer per-

ceptron. The real and imaginary parts are modeled individually for complex responses. The out-

puts of the ANN are antenna characteristics at discrete set of frequencies f1 through fm. 
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According to (1), the model resolution becomes Lmax after Ntransition, here, set to 5. 

The strategy for updating the dataset used to build/refine the ANN surrogate is as 

follows. If only Rf is employed, all EM data acquired in the MO process is incorporated, 

including the initial set of samples xB
(j), j = 1, …, Ninit, along with the infill points ac-

cumulated up to iteration i inclusive, i.e., xI
(k.j), k = 1, …, i, and j = 1, …, Ninfill. For 

variable-resolution approach, the lowest-fidelity samples are removed in each iteration, 

so that the overall number of data points does not exceed 2Ninit; however, if only Rf 

points are left, the dataset size may increase beyond 2Ninit. 

The last component of the algorithm is the termination condition, which is founded 

on the sufficient resemblance of the Pareto fronts generated in subsequent iterations. 

The similarity metric is defined as 
 

( ) ( 1)i i

i nondom nondomE −= −F F                                                   (2) 

 

The algorithm is terminated if a moving average Ea.i <  (here, we set  = 1), where 
 

 
.

max{1, 1}

1

max 1, 1 1
a

i

a i k

k i Na

E E
i i N = − +

=
− − + +
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Using (3) enables smoothing fluctuations of Ei caused by the stochastic components 

in the optimization routine (specifically, MOEA).  

2.4 Complete Framework 

The flow diagram of the complete suggested MO procedure is illustrated in Fig. 2. 

There are several stages involved, which include the initial sampling, building the ANN 

metamodel, the machine learning optimization loop with iterative generation of multiple 

infill points, and metamodel refinement, as well as model management process adjusting 

the EM analysis fidelity during the search operation. The first stages are executed with 

the lowest-resolution EM analysis (Lmin), which is gradually increased so that the final 

dataset only contains high-fidelity samples (Lmax).  

3 Results 

This part of the manuscript showcases the operation of the proposed MO technique 

based on two antennas and juxtaposition to several benchmark algorithms.  

3.1 Test Problems 

Consider Antennas I and II illustrated in Fig. 3. Antenna I is realized on  sub-

strate (εr = 3.5, h = 0.762 mm). The design variables are x = [L0 dR R rrel dL dw Lg L1 

R1 dr crel]T, the feed line width is  (dimensions in mm). Antenna II is realized 

on  substrate  and its design variables are x = [s1 

s2 v1 v2 u1 u2 u3 u4]T; other parameters are  w1 = w3 = w4 = 0.6, w2 = 1.2, u5 = 1.5, s3 = 3.0 

and v3 = 17.5. The EM models are simulated in CST Microwave Studio with the model 

fidelity controlled using lines-per-wavelength (L = LPW). The range of L for Antenna 

I is from Lmin = 11 (~210,000 mesh cells, simulation time 42 s) to Lmax = 20 (~2,300,000 
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cells, 424 s). For Antenna II, we have Lmin = 17 (~115,000 cells, 115 s) and Lmax 

(~300,000 cells, 240 s). For Antenna I, the objectives are minimization of the substrate 

area (F1) and minimization of the maximum reflection level within the operating band 

from 3.1 GHz to 10.6 GHz (F2). For Antenna II, the goals are maximization of the end-

fire gain (F1), and minimization of the maximum |S11| within the operating range from 

10 GHz to 11 GHz (F2).  

3.2 Verification Experiment Setup. Benchmark Techniques 

The antennas of Fig. 3 are optimized using the suggested algorithm. The outcome is 

presented as the Pareto set encapsulating non-dominated parameter vectors extracted 

from the most recent EM dataset {xT
(i.j)}.  

 

 
Fig. 2. Flow diagram of the proposed MO algorithm. 
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Fig. 3. Verification devices: (a) Antenna I [18], (b) Antenna II [19]. 
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Our technique has been compared to three surrogate-assisted MO frameworks. Al-

gorithms 1 and 2 are one-shot procedures (the metamodel is identified upfront and then 

optimized by means of MOEA). The difference between these methods is the surrogate 

modeling approach (kriging for Algorithm 1 and multi-layer perceptron for Algorithm 

2). Both methods are run in two versions, different in the training dataset cardinality 

used to build the surrogate: 400 (version I), and 1600 (version II). Algorithm 3 is a 

single-objective version of the proposed method, where the optimization is carried out 

using the high-fidelity EM model. Furthermore, Algorithm 3 employs an accumulative 

dataset updating scheme: all candidate designs are inserted therein, and no samples are 

ever eliminated. These methods were specifically implemented for benchmarking. 

3.3 Results and Discussion 

Figures 4 and 5 show the Pareto sets produced by the suggested procedure and the 

benchmark techniques for Antenna I and II, respectively. The antenna responses for cho-

sen Pareto optimal solutions can be found in Figs. 6. The design objectives and antenna 

responses are shown the pictures are evaluated using the respective high-fidelity EM 

models. The optimization costs have been gathered in Table 1. Note that only the ex-

penses related to EM analysis are included as all other costs (ANN training, surrogate 

optimization using MOEA) are negligible compared to high-fidelity EM simulation 

(about four minutes for both Antenna I and II). 

The results underscore remarkable performance of the proposed MO procedure re-

garding reliability and cost-efficiency. As indicated in Figs. 4 and 5, our framework 

yields significantly better Pareto sets than Algorithms 1 and 2. The reason is the rela-

tively poor accuracy of the surrogate models used by these methods (kriging and ANN). 

The improvement observed for N = 1600 compared to N = 400 correlates with enhanc-

ing the surrogate’s predictive power. For Antenna I, the relative root-mean-squared er-

ror (RRMSE) is reduced from around twenty to fifteen percent, whereas for Antenna 

II, RRMSE falls from eight to five percent. The non-dominated solution sets quality 

obtained by Algorithm 3 is comparable to the proposed method, demonstrating the ad-

vantages of machine learning over one-shot surrogate-assisted procedures.  

Concerning cost efficiency (cf. Table 1), the introduced procedure is superior to all 

benchmark methods. The average CPU cost corresponds to only around 214 high-fidel-

ity EM simulations, which corresponds to 48-percent speedup over Algorithms 1 and 2 

(version I), 87-percent speedup over version II of Algorithms 1 and 2, and 38-percent 

acceleration over Algorithm 3.  

 

Table 1. MO costs: proposed procedure versus benchmark algorithms 
 

Algorithm 
Optimization cost# 

Antenna I Antenna II 

This work (variable-fidelity ML with ANN surrogates) 150.4 264.4 

Algorithm 1 
N = 400 (version I) 400 400 

N = 1600 (version II) 1600 1600 

Algorithm 2 
N = 400 (version I) 400 400 

N = 1600 (version II) 1600 1600 

Algorithm 3 320 340 
# The cost is given in the number of Rf simulations. To compute the expenses for the proposed method, the 

relationship between the evaluation of time Rf and lower fidelity models is considered. 
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Fig. 4. Pareto sets found for Antenna I: proposed technique versus Algorithms 1, 2, and 3  

 
Fig. 5. Pareto sets obtained for Antenna II: proposed algorithm versus Algorithms 1, 2, and 3.  
 

 
                                         (a)                    (b) 

Fig. 6. Characteristics of Antennas I and II at the representative non-dominated designs found with 

the suggested algorithm: (a) Antenna I: Design 1 (A = 337 mm2), Design 1 (A = 366 mm2), Design 

1 (A = 395 mm2), Design 1 (A = 476 mm2); (b) Antenna II: Design 1 (average gain 7.1 dB), Design 

2 (average gain 6.5 dB), Design 3 (average gain 5.8 dB), Design 4 (average gain 5.5 dB).  

 

The performance of our methodology makes it an appealing alternative to available 

MO algorithms. Its reliability and computational efficiency are accompanied by imple-

mentation simplicity and straightforward handling. Note these advantages were shown 

for test problems considerably more challenging than typically found in the MO-related 

literature. 

4 Conclusion 

This research suggested an alternative methodology for efficient multi-objective opti-

mization (MO) of antennas, involving ANN metamodels and multi-fidelity EM simu-

lations. Extensive validation demonstrates superior performance of the presented strat-

egy regarding the solution quality and low running cost. These features are corroborated 

through benchmarking against diverse nature-inspired and ML frameworks. Future 

work will focus on extending our technique’s applicability range for more challenging 

cases including higher-dimensional search spaces and increased numbers of objectives. 

Target bandwidth 
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