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Abstract. The transportation sector is responsible for approximately
23% of global greenhouse gas (GHG) emissions, with road transporta-
tion contributing nearly 70% of these emissions. The widespread adop-
tion of electric vehicles (EVs) is transforming this sector by reducing
emissions and decreasing reliance on fossil fuels. However, the growing
number of EVs presents significant challenges for charging infrastructure,
particularly in managing long queues, extended wait times, and limited
station capacity. Most existing studies on the performance of electric
vehicle charging stations assume Poisson arrivals and exponential charg-
ing times, simplifications that often overlook real-world variability. This
paper introduces a generalized queueing model that leverages empirical
interarrival and charging duration data for more accurate performance
evaluation. A transient analysis is conducted, examining two operational
optimization strategies aimed at minimizing queue sizes during peak de-
mand: (1) a queue management policy that encourages charging only
up to a predefined state-of-charge (SoC) threshold instead of the typical
80˘100%, and (2) dynamic control of the number of active charging ports
based on demand. The results show that these operational optimization
policies improve the efficiency of the charging station and significantly
improve the customer experience.

Keywords: Plugged-in Electric Vehicles (PEV) · Fast Charging Sta-
tions · diffusion approximation models · Transient analysis · Performance
Evaluations.

1 Introduction

The transportation sector contributes approximately 23% of global greenhouse
gas (GHG) emissions, with road transportation accounting for nearly 70% of
these emissions [1]. The rapid adoption of electric vehicles (EVs) is driven by the
urgent need to reduce the carbon footprint of transportation, a crucial step in
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mitigating pollution and other environmental challenges associated with fossil
fuel consumption. As a result, plug-in electric vehicles (PEVs) are becoming an
integral part of the global transportation system, with their market penetration
expected to increase significantly in the coming years.

Municipalities and businesses are accelerating the shift to electric vehicles
(EVs) by integrating them into fleets and offering adoption incentives. Interest
among individual car owners is also rising globally, driven by the significant ben-
efits of EVs. However, this growing demand requires a corresponding expansion
of charging infrastructure and power distribution networks to ensure reliable and
efficient EV operation.

Despite their environmental and economic advantages, EVs face challenges
such as limited driving range and long charging durations, which can deter
widespread adoption [2]. Extended charging times often lead to congestion at
charging stations, particularly during peak hours, resulting in delays and re-
duced user satisfaction [3]. Addressing these challenges requires efficient queue
management strategies that account for the stochastic nature of EV arrival pat-
terns and charging durations.

Most existing studies on EV charging station performance assume that EV
arrivals follow a Poisson process and that charging times are exponentially dis-
tributed. Consequently, the widely used queueing model for charging station
analysis is the M/M/c model [3]. However, these Markovian assumptions do
not always hold in real-world scenarios, necessitating more generalized models
to capture system dynamics accurately. While some studies have incorporated
time-varying interarrival rates [4], they remain constrained by Poisson arrival
assumptions and exponential service times. An attempt to model a charging
station considering non-stationary arrival and charging rates was discussed in
[5].

This paper presents a diffusion-based G/G/c/N queueing framework to an-
alyze the performance of EV charging stations under realistic, time-varying ar-
rival rates. Using real-world data, the model captures dynamic fluctuations in
customer arrivals and service times, allowing the evaluation of two operational
strategies: dynamically limiting the final state of charge (SoCf ) and adjusting
the number of active charging ports. Simulation results demonstrate that these
strategies can effectively reduce queue lengths during peak hours, offering prac-
tical insights for optimising charging infrastructure operations.

2 Time-dependent queueing model for the fast charging
station

We model the fast-charging station as a G/G/c/N queue, where N = c + K.
The notation G/G/c/N indicates that both interarrival and service times follow
general distributions. To capture the dynamic evolution of the number of elec-
tric vehicles (EVs) in the charging station, we approximate the system using a
diffusion process. Specifically, we define a continuous process {X(t)}, where the
probability of having x EVs in the station at time t is given by Prob{X(t) = x}
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for x ∈ [0, N ]. These types of models were started in computer science by a
single server G/G/1/N model [6]. The approach to solve diffusion equations in
the case of transient states was proposed for the G/G/1/N model in [7]. We use
this approach in many applications, e.g. modelling transient behaviour of SDN
networks [8] and energy storage systems [9].

The following partial differential equation describes the diffusion process gov-
erning the number of EVs in the charging station, e.g. [10]:

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
, (1)

where βdt and αdt represent the mean and variance of the changes in the diffusion
process over an infinitesimal time interval dt. The probability density function
(PDF) of the number of EVs in the charging station is given by:

f(x, t;x0) = P [x ≤ X(t) < x+ dx |X(0) = x0], (2)

where x0 is the initial state of the process at t = 0.
The mean change in the number of EVs in the charging station, β, and

its variance, α, depend on the mean arrival rate λ, the squared coefficient of
variation of the interarrival time C2

A, the mean charging rate per port µ, and
the squared coefficient of variation of the charging time C2

B . They also depend
on the number of currently occupied charging ports. That means that diffusion
parameters depend on the process value. To represent it in an easy form, the
diffusion interval [0, N ] is partitioned into c sub-intervals: [0, 1], [1, 2], . . . , [c −
1, N ]. Each sub-interval corresponds to a specific number of occupied charging
ports at a given time, from one to c. In the last sub-interval, [c − 1, N ], all c
charging ports are occupied.

The diffusion parameters for each sub-interval are chosen as

αi = λC2
A + iµC2

B , βi = λ− iµ for i− 1 < x < i, i = 1, 2, . . . , c− 1

αc = λC2
A + cµC2

B , βc = λ− cµ for c− 1 < x < N (3)

The state of the diffusion process, x, evolves as EVs arrive at the charging station,
begin charging when a port becomes available, and depart upon completing their
charge. Probability mass shifts between neighboring sub-intervals whenever the
charging ports are not fully occupied and EVs enter or exit the system.

The probability density function (PDF) of the number of EVs in the station
is constructed from the diffusion process PDFs across all sub-intervals. These are
obtained by solving the diffusion equations for each sub-interval, incorporating
the probability flows between adjacent regions as described in [11].

The application used to solve the system is implemented in Python and
executed on an HP ProLiant DL580 G7 server, a four-node cc-NUMA system
with four Intel Xeon E7-4870 2.4 GHz CPUs (80 logical processors) and 512 GB
of DDR3 REG RAM across 32 modules. The system runs SUSE Linux Enterprise
Server 15 SP4 with kernel version 5.14.21-150400.24.41.
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Fig. 1. Dynamic evolution of the mean arrival rate of EVs to the charging station, λ(t)
from 9:00 to 20:00.

3 Performance evaluation and operational optimisation
of the fast charging station

We evaluate the impact of charging station management policies on the per-
formance of the charging station. The performance metrics considered in this
study is the mean number of EVs present at the charging at time t denoted
as E[N(t)]. It is derived using the probability density function of the diffusion
process as determined in the previous section

E[N(t)] =

∫ N

0

xf(x, t;ψ)dx. (4)

The EV charging time depends on battery capacity, initial and target states
of charge (SoCi and SoCf ), and charging power, Pc (in KW). It is given by:

Tc = (SoCf − SoCi)
B

Pc
(5)

where B = Q · V is the battery’s energy capacity, with Q as nominal capacity
(Ah) and V as voltage (V).
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Fig. 2. The influence of dynamic changes of mean charging times Tc(t) (by adjusting
the final state of charge at time t denoted as SoCf (t)) on the transient evolution of
the mean number of EVs, E[N(t)] from 9:00 to 20:00.

The performance of charging stations mainly depends on the customer arrival
rate, λ, and the charging duration, Tc = 1/µ. Arrival rate values used in the
simulations are taken from [12]. Figure 1 shows the interpolated hourly mean
arrival rate, λ(t), from 9:00 to 20:00, based on Tables 1 and 2. All figures use a
6-minute time unit, covering 11 hours (220 intervals).

To remain consistent with the dataset in [12], we assume a Poisson arrival
process, although the diffusion approximation supports general arrival patterns.
Accordingly, the squared coefficients of variation are set to C2

A = C2
B = 1. The

system is configured with a maximum parking capacity of N = 30, a waiting area
for up to K = 20 vehicles, and each EV has a battery capacity of B = 50 kWh.
The charging power is set to Pc = 50 kW, identical across all ports, implying
uniform charging durations Tc or equivalently, a consistent charging rate µ across
all ports.

To evaluate the impact of charging duration and queue management strate-
gies, we vary the final state of charge (SoCf ) of arriving vehicles. Each EV is
assumed to arrive with an initial state of charge SoCi = 20%, and all vehicles
have a battery capacity of B = 50 kWh. Adjusting SoCf directly affects the
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Table 1. Data for Scenario 1 (c = 10, SoCf in %, and Tc(t) in mins

t 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
λ(t) 17.74 19.55 21.98 24.38 23.54 24.32 26.49 27.73 28.26 23.81 19.09 15.32
SoCf 70 70 70 53 53 53 45 45 45 70 70 70
Tc(t) 30.00 30.00 30.00 20.00 20.00 20.00 15.00 15.00 15.00 30.00 30.00 30.00
µ(t) 2.00 2.00 2.00 3.00 3.00 3.00 4.00 4.00 4.00 2.00 2.00 2.00

Table 2. Data for Scenario 2 (Tc = 30.00 minutes or µ = 2.00)

t 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
λ(t) 17.74 19.55 21.98 24.38 23.54 24.32 26.49 27.73 28.26 23.81 19.09 15.32
c(t) 10 10 10 13 13 13 15 15 15 10 10 10
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Fig. 3. The influence of dynamic changes of number of charging ports at time t denoted
as c(t) on the transient evolution of the mean number of EVs, E[N(t)] from 9:00 to
20:00.

charging duration. For example, charging up to SoCf = 70% yields a charging
time Tc = 30 minutes, based on Equation 5.

Figures 2 and 3 illustrate two operational optimisation strategies and their
effects on the transient queue size at the charging station.
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In the first scenario (Fig. 2), Tc or the service rate µ is reduced during
peak hours by capping SoCf , as shown in Table 1. Lowering SoCf shortens Tc,
reducing congestion. We also compare limiting SoCf only during peak hours
with applying it throughout the day. For instance,

SoCf = {45, 53, 70}, Tc = {15, 20, 25, 30} minutes,

show how more aggressive restrictions (e.g., SoCf = 45%, Tc = 15 min) signifi-
cantly reduce queue size but may lower user satisfaction, as most drivers prefer
to charge up to at least 80%. Hence, increasing charging power or the number
of ports may be more acceptable alternatives.

In the second scenario (Fig. 3), the number of active charging ports is in-
creased during peak demand (12:00–17:00). Once demand drops and grid load
increases after 17:00, ports are scaled down. This strategy enhances queue man-
agement and aligns with grid efficiency goals.

4 Conclusion

The increasing adoption of electric vehicles (EVs) necessitates the development
of efficient charging infrastructure to accommodate rising demand while min-
imizing congestion and service delays. In this study, we proposed a G/G/c/N
diffusion-based queueing model to evaluate the performance of EV charging sta-
tions under time-varying arrival rates. Unlike traditional M/M/c models, our
approach accounts for general arrival and service time distributions, providing a
more realistic representation of charging station dynamics.

Our analysis revealed that queue lengths and waiting times fluctuate based on
EV arrival patterns, with peak congestion occurring during high-demand hours.
By examining the effects of different charging durations, we demonstrated that
imposing a final state of charge (SoCf ) threshold significantly improves station
efficiency. Specifically, limiting SoCf reduces charging times, increases through-
put, and lowers the number of lost customers who are unable to charge due to full
station capacity. These findings highlight the critical role of queue management
strategies in optimizing charging station performance. Future research can ex-
tend this work by incorporating more complex traffic patterns, multiple classes of
customers and charging ports, and dynamic pricing strategies to further improve
the efficiency of EV charging infrastructure.
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