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Abstract. Prototype selection is one of the typical goals of machine
learning, which aims to reduce the number of vectors in the training set.
The local set border selector (LSBo) algorithm is presented as a Pareto
optimal choice between the reduction power of the training set and the
classification quality. Its complexity is O(n2), which means that it is not
very advantageous for larger sets. This article presents the Fast LSBo
algorithm, which is based on the original idea of the LSBo algorithm.
After the applied conceptual changes, the algorithm has achieved a com-
plexity of O(m logm). Additionally, the analysis of Fast LSBo on several
data sets shows that its classification quality and reduction power remain
statistically indistinguishable from the original LSBo algorithm.

1 Introduction

Let us assume that we have a learning data set D = {⟨xi, yi⟩ : i = 1, . . . ,m}
where xi ∈ Rn are the input vectors and yi ∈ [1, . . . , c] are the class labels.
Selection of instances (prototypes) means that we are looking for a subset S ⊆
D that is enough to build a trustworthy classifier, for example, a k nearest
neighbor (kNN) classifier [2]. Vector selection algorithms can be divided into two
groups: filtering algorithms and prototype selection algorithms. The first group
consists of algorithms whose main goal is to remove erroneous vectors, in other
words, vectors that are inconsistent with the rest of the data set. Here, the best
examples are the ENN [10] and LSSm algorithms [6]. The second group consists
of algorithms that try to select prototypes, i.e. the most important vectors of
the training set, i.e. those that carry the basic knowledge about the decision
boundaries between classes. Interesting examples of such algorithms include [3,
9, 4]. It is also worth mentioning here a few review articles devoted to a broad
analysis of vector selection algorithms [3, 4].

The first time local sets was introduced in the algorithm Iterative Case Filter-
ing (ICF) in [1]. The local set for a given vector x from D is defined as the set of
vectors in the largest hypersphere centered in x that does not contain an instance
of the opposite class (an enemy): LS(x) = {x′ : ||x′−x|| < ||x−ne(x)||}, where
ne(x) = argminx′∧y ̸=y′ ||x− x′|| is the nearest enemy. This definition strongly
uses the distance to the nearest vector of an alien class as the radius of the
hypersphere.
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Before presenting the local set border selector (LSBo) algorithm [6], it is
necessary to present the local set-based smoother (LSSm) algorithm, which is
the necessary first phase of the LSBo algorithm.

The LSSm algorithm is a very good example of a filtering algorithm, i.e., an
algorithm that removes potentially inconsistent vectors from the original data
set. Therefore, it will be used in the algorithm presented below, however in a
modified version of lower complexity, but providing the same quality of selection
in terms of its usefulness in classification.

The LSSm uses the idea of local sets to define two properties that are of vital
importance for constructing the final algorithm. The first is the usefulness of a
given instance x, measured as the number of instances which has x in their local
sets:

u(x) = |{x′ ∈ D : x ∈ LS(x′)}| (1)

The second property used in LSSm is the harmfulness of x measured as the
number of instances for which the x instance is the nearest enemy:

h(x) = |{x′ ∈ D : ne(x′) = x}| (2)

The difference between those two properties defines the strength of balance
between usefulness and harmfulness. The LSSm algorithm removes instances
with greater harmfulness than usefulness. The final LSSm algorithm is presented
in Alg. 1. The complexity of the LSSm algorithm is O(m2).

Now, the LSBo algorithm can be described. The first step of LSBo is to filter
the original dataset D by the LSSm algorithm, thus obtaining a filtered dataset
T . The next step is to calculate local sets for T . After that, the vectors in T
are ordered (ascending) by the cardinality of local sets |LS(x)|. The initial set
of prototypes S is empty and the main step browses the ordered vectors in the
previous step, and if neither element of LS(x) is already in S then S is extended
by x.

The algorithm’s strategy first analyzes what is near to the decision boundaries
after filtering out bad vectors. The prototype set is thus built from reliable
vectors on the decision sides, and therefore, vectors far from the boundaries do
not need to be added to the prototype set. The algorithm is presented in Alg. 2.

Algorithm 1: LSSm(D)

Data: D — dataset

Result: S
1 S = {}
2 compute local sets(D)

3 foreach x ∈ D do
4 compute u(x) and h(x)

5 if u(x) ≥ h(x) then

6 S = S ∪ {x}

Algorithm 2: LSBo(D)

Data: D — dataset

Result: S
1 S = {}
2 T = LSSm(D)

3 compute local sets(T )
4 sort T ascending by the cardinality

of LS

5 foreach x ∈ T do
6 if x.LS ∩ S = {} then

7 S = S ∪ {x}
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2 Fast local set border selector algorithm

To construct the Fast LSBo algorithm, it was necessary to reduce the complexity
of the LSSm algorithm and the complexity of the central part of the LSBo
algorithm. A fast version of the LSSm algorithm was proposed by us in [5].
However, it will be slightly modified here.

The crucial point that the complexity of LSSm and LSBo is O(m2) is:∑
x∈D LSC(x) = O(m2). This means that as long as the algorithm uses the

LS, the complexity will be O(m2). For this reason, one of the key changes for
both algorithms is to use the firmly local sets (FLS) instead of local sets:

FLS(x) =

{
{x′ : ||x′ − x|| < ||x− ne(x)||}, if ∃x′∈Nk(x) y ̸= y′

Nk(x), otherwise,
(3)

where Nk(x) is a set of nearest neighbours of x.

Fast LSSm algorithm: FLS is very crucial for overall complexity because since
k is O(1), then the FLS(x) can be computed in average complexity O(logm).
In FastLSSm, we used balanced forests of locality-sensitive hashing to compute
nearest neighbours and LS’s.

In this version of fast LSSm, the graph-based approximation (HNSW) of the
nearest neighbours will be used [7]. This change is dictated by the requirements
of the central part of the Fast LSBo algorithm presented in the next section.

The usefulness and harmfulness must be redefined as in [5] by

u′(x) = |{x′ ∈ D : x ∈ FLS(x′)}|, (4)

and by
h′(x) = |{x′ ∈ D : ne(x′) = x ∧ x ∈ Nk(x′)}| (5)

appropriately.
The main idea behind the LSSm lies in: instance x remains in set if its

usefulness is not smaller than harmfulness. See algorithm 3.
Hopefully, |FLS(x)| has a more useful property:

∑
x∈D |FLS(x)| = O(m)

because k is fixed (not dependent on m). This proves vital to achieving an
overall complexity of O(m logm), as discussed further in Section 3.

Fast LSBo algorithm: Now, all the elements of the fast LSBo algorithm will be
presented. The LSBo algorithm is also based on the FLS definition instead of LS.
However, several other modifications must be made to the original algorithm.
The first is the use of the fast version of the LSSm algorithm – this is a necessary
condition to have a chance of the overall complexity of O(m logm).

The next step is to use a unique structure to represent the set S, i.e., the set
of selected prototypes. The representation of the set S will play an additional
role here, apart from storing the selected vectors. The structure of the set S will
be used to find the closest vectors—it will be necessary to know which vector in
S is closest to a given x.
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Algorithm 3: FastLSSm(D)

Data: D — dataset

Result: S
1 S = {}
2 construct HNSW set on D
3 compute Nk(x) for each x ∈ D using HNSW’s
4 foreach x ∈ D do

5 find nearest enemy ne(x) in Nk(x)
6 if any enemy then

7 h′[ne(x)]++

8 foreach x ∈ D do

9 foreach x′ ∈ Nk(x) do
10 if no enemy of x in Nk(x) ∨ ||x′ − x|| < ||x− ne(x)|| then
11 u′[x′]++

12 foreach x ∈ D do
13 if u′(x) ≥ h′(x) then

14 S = S ∪ {x}

That is why the graph-based HNSW structure [7] represents S, which allows
alternating between adding new elements to the set and querying for nearest
neighbors. As we show below, this plays a key role in the most essential point of
the LSBo algorithm.

The second essential data structure is the HNSW (J) array of sets. This
structure is used twofold: to determine nearest enemy class vectors and to deter-
mine the cardinality of the FLS sets. Determining the nearest enemies consists
of determining each set’s nearest neighbor from the J array of sets except for the
own set. On the other hand, building the FLS sets consists of taking the nearest
k neighbors from the own class set from the J array, but only those closer than
the nearest enemy.

The fast version of the LSBo algorithm also uses the ordering of vectors in
T in the main loop, which determines the prototype vectors S. This time, the
ascending sorting occurs here by the cardinality of FLS instead of the cardinal-
ity of LS. In the above-specified order, all vectors from T are then traversed.
However, the condition from the line 6 of the LSBo algorithm 2 had to be sig-
nificantly reformulated. This condition in LSBo stated whether no vector from
LS(x) is in the prototype set of S because if so, x is necessary for S. However,
in the fast version of LSBo, we do not have the set LS(x). Still, the same effect
can be obtained by the condition:

||x− xn|| > ||x− xe||,

in which it is tested whether the nearest neighbor of x in S (xn) is more distant
than the nearest enemy of x (xe). Such a case means no vector from the real
LS(x) is in the current set S. Consequently, it forces the addition of the vector
x to S.
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Algorithm 4: FastLSBo(D)

Data: D — dataset

Result: S — the set of selected prototypes
1 T = FastLSSm(D)

2 S = empty HNSW set

3 J = construct one HNSW per class in T (one HNSW set for all instances of given
class)

4 foreach x ∈ T do
5 compute |FLS(x)| using HNSW for class y from J

6 sort T ascending by |FLS(x)|
7 foreach ⟨x, y⟩ ∈ T do
8 xn = nearest neighbour in S to x

9 xe = nearest enemy of x in J

10 if ||x− xn|| > ||x− xe|| then
11 S = S ∪ {x}

3 Complexity and experimental results on benchmark

This section starts with the presentation of the average complexity of Fast LSBo
is O(m logm) and that the accuracy of the fast version of LSBo is so strongly
similar (in almost all cases the same) to the original LSBo. The most expensive
part of the Fast LSSm algorithm is its first part, i.e. the lines 2 and 3. The
average cost of adding m vectors to the HNSW structure is O(m logm). The
cost of determining k nearest neighbors for all m vectors is also O(m logm). In
figure 1, a relation is presented between the time of adding vectors and building
sets of nearest neighbors using HNSW. On the OX axis we see the values of
the number of m vectors in the set D. On the OY axis is the execution time
divided by m logm. This means that the presented graph should not grow if
building and using the HNSW architecture is to have complexity O(m logm) as
mentioned above. And this is precisely how this graph behaves, which proves the
complexity of O(m logm).

The next three loops of the algorithm have a complexity of O(m) (we assume
that k is a constant value).

The Fast LSBo algorithm starts execution with the LSSm algorithm.

In the next part, an empty set S is created, to which a subset of D will be
added. Consequently, this will not worsen the previous complexity. In the next
part, a series of HNSW structures (table J) is created, in which the vectors of
the appropriate classes will be added (one HNSW structure J [i] for the vectors of
i-th class). Then, the sets FLS(x) are determined. The costs of these operations
are not greater than the costs of creating an HNSW structure for the entire set
D. This means that the complexity of this part is limited by O(m logm) as well
as sooner. The next step is to sort the array of all cardinalities |FLS(x)|—once
again O(m logm).
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Fig. 1. Time consumption by HNSW.
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In the last loop, we have m iterations, and each iteration has complex-
ity O(logm) because none of the loop elements require more complexity than
O(logm).

This gives the complexity O(m logm) of the fast LSBo algorithm.

Experimental results: Since it was shown in [6] that the LSBo algorithm is very
effective as a Pareto tradeoff between training set reduction power and classifi-
cation quality, these tests compare LSBo with state-of-the-art instance selection
algorithm and kNN. Hence, here we focus on showing that the classification
quality and the quality of prototype selection remain almost the same.

For this purpose, 45 sets were selected from the UCI Machine Learning Repos-
itory [8]. Datasets differ in the number of instances, attributes, and balance of
classes. In all tests, we used 10-fold stratified cross-validation and all learning
machines were trained on the same sets of data partitions. To visualize the per-
formance of all algorithms, we present the average accuracy for each benchmark
dataset and each learning machine, Table 1. In addition, we present the average
reduction of the dataset size in separate tables. Ranks are calculated for each
machine for a given dataset. The ranks are calculated as follows: First, for a
given benchmark dataset, the averaged accuracies of all learning machines are
sorted in descending order. The machine with the highest average accuracy is
ranked 1. Then, the following machines in the accuracy order whose accuracies
are not statistically different1 from the result of the first machine are ranked 1,
until a machine with a statistics different result is encountered. That machine
starts the next rank group (2, 3, and so on), and an analogous process is re-
peated on the remaining (yet unranked) machines. Notice that each cell in the
main part of is in a form: acc+std(rank), where acc is the average accuracy (for
a given data set and given learning machine), std is its standard deviation and
rank is the rank described just above. If a given table cell is in bold, it means
that this result is the best for the given data set or not worse than the best one
(rank 1 = winners).

1 We use the paired t-test to test the significance of statistical differences.
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As can be seen from the results presented in the table, the differences between
the classification quality of the regular version of the LSBo algorithm and the
fast version are practically negligible for all data sets. The same is true for
the reduction power of the training set—both algorithms work very similarly in
this aspect. The goal of creating a fast version of the LSBo algorithm has been
achieved.

Conclusions

The research goal was to create an algorithm that would have lower complexity
than the local set border selector algorithm and that would be as good as possible
in terms of classification quality on benchmark tests. Thanks to the careful
selection of new data structures and appropriate reformulation of the original
algorithm, it was possible to create a new algorithm that is just as good but with
complexity O(m logm) instead of O(m2). Thanks to this, it will be possible to
use this algorithm for much more significant problems.
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Table 1. Comparison of LSBo and fast LSBo algorithms.

Dataset Accuracy Removed %

LSBo LSBoFast LSBo LSBoFast

arrhythmia 44.2±20(1) 43.6±19(1) 0.55±0.04 0.55±0.04
autos 60.3±12(1) 59.2±12(1) 0.67±0.02 0.67±0.02
balance-scale 75.9±5.7(1) 75.3±5.3(1) 0.78±0.01 0.84±0.01
blood-transfusion 70±5.1(1) 68.7±5.8(1) 0.75±0.01 0.86±0.01
breast-cancer-diagnostic 92.8±4(1) 92.5±3.8(1) 0.91±0.004 0.91±0.005
breast-cancer-original 94.5±4.5(1) 94.6±3.6(1) 0.97±0.004 0.96±0.004
breast-cancer-prognostic 63.3±13(1) 63.4±13(1) 0.78±0.03 0.78±0.03
breast-tissue 58.7±14(1) 59.5±14(1) 0.73±0.02 0.73±0.02
car-evaluation 87.4±2.2(1) 78.4±2.3(2) 0.52±0.01 0.89±0.005
cardiotocography-1 68.6±3.5(1) 68.5±3.7(1) 0.71±0.004 0.71±0.004
cardiotocography-2 85.9±2.1(1) 86±2.3(1) 0.9±0.003 0.89±0.004
chess-rook-vs-pawn 85.4±1.8(1) 85.5±2(1) 0.8±0.004 0.79±0.004
cmc 42.6±3.8(1) 42.8±3.7(1) 0.61±0.007 0.58±0.008
congressional-voting 89.1±6.5(1) 89.4±6.2(1) 0.88±0.01 0.88±0.01
connectionist-bench-sonar 78.3±9.2(1) 78.2±9.3(1) 0.7±0.01 0.71±0.01
connectionist-bench-vowel 72.1±5.8(1) 72.2±5.7(1) 0.78±0.005 0.78±0.005
cylinder-bands 65.9±8.8(1) 66.3±8.7(1) 0.69±0.01 0.7±0.01
dermatology 87.7±5(1) 87.9±5.4(1) 0.8±0.009 0.81±0.009
ecoli 77.1±6.9(1) 77.5±7.2(1) 0.85±0.01 0.85±0.01
glass 62.5±9.4(1) 62.3±9.2(1) 0.72±0.01 0.73±0.01
habermans-survival 66.6±7.8(1) 67.1±8.1(1) 0.77±0.01 0.78±0.01
hepatitis 80.9±11(1) 81.1±12(1) 0.84±0.03 0.84±0.03
ionosphere 82±6.4(1) 81.8±6.5(1) 0.82±0.01 0.81±0.01
iris 89.7±8.2(1) 88.4±9.2(1) 0.88±0.009 0.89±0.01
libras-movement 68.7±6.7(1) 68.5±7.4(1) 0.68±0.01 0.69±0.01
liver-disorders 60.7±9(1) 59.5±9.3(2) 0.61±0.02 0.62±0.01
lymph 74.4±12(1) 73.4±11(1) 0.74±0.02 0.79±0.02
monks-problems-1 91.8±7(2) 93.3±6.1(1) 0.8±0.001 0.8±0.002
monks-problems-2 54.7±6.4(1) 55.3±5.4(1) 0.64±0.01 0.64±0.02
monks-problems-3 90.6±4.7(1) 91±3.9(1) 0.8±0.003 0.81±0.004
parkinsons 84.7±8.6(1) 84.1±8.9(1) 0.84±0.01 0.84±0.01
pima-indians-diabetes 69.1±5(1) 68.9±5.3(1) 0.75±0.008 0.75±0.008
sonar 78.3±9.2(1) 78.2±9.3(1) 0.7±0.01 0.71±0.01
spambase 85.4±1.9(1) 85.4±1.9(1) 0.88±0.003 0.87±0.005
spect-heart 74±9(1) 72.2±9.4(1) 0.79±0.01 0.91±0.01
spectf-heart 69.6±9(2) 70.7±8.5(1) 0.79±0.02 0.79±0.02
statlog-australian-credit 72.8±6(1) 73.4±5.7(1) 0.77±0.01 0.78±0.01
statlog-german-credit 67±4.6(1) 67±4.4(1) 0.7±0.008 0.71±0.008
statlog-heart 76.1±7.4(1) 75.3±8(1) 0.75±0.01 0.75±0.01
statlog-vehicle 67.2±4.8(1) 66.8±4.8(1) 0.7±0.008 0.71±0.007
teaching-assistant 48.3±14(1) 48.9±13(1) 0.59±0.02 0.59±0.02
thyroid-disease 91±1.4(2) 91.6±1(1) 0.97±0.001 0.96±0.003
vote 91.2±5.6(1) 89.6±6.5(2) 0.86±0.02 0.92±0.01
wine 92.5±6.2(1) 92.4±6.5(1) 0.83±0.01 0.84±0.01
zoo 78.1±10(1) 78.1±11(1) 0.89±0.006 0.89±0.006

Mean 74.8±7.2 74.5±7.2 0.77±0.01 0.78±0.01
Mean Rank 1.07±0.038 1.07±0.038
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