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Abstract. In this paper, we contribute by providing a direct comparison
of performance of NAS Parallel Benchmarks implemented with standard
CUDA against our extended implementation with CUDA Graphs. The
evaluation was conducted for four hardware platforms, using two desktop
GPUs—NVIDIA GeForce RTX 2080 and NVIDIA GeForce RTX 4070
Ti—and two server-class GPUs—NVIDIA Quadro 8000 and NVIDIA
A100 80GB. The primary focus of the comparison was the execution
time of the benchmarks, analyzed for various problem sizes (classes S,
A, B, C and D). Two applications exhibited noticeable performance gains
from the implementation of CUDA Graphs. The CG code demonstrated
the most consistent improvements across all cases, achieving an average
relative speedup of 3.3%. The highest result of 4.13% (Class C) for this
algorithm was achieved for the NVIDIA GeForce RTX 4070 Ti card.
The LU code showed gains primarily on newer generation GPUs, with
an average speedup of 2% on the RTX 4070 Ti and 7%, on the A100,
with a maximum gain of 11.87% (Class B). In contrast, visible negative
performance was observed for MG and some instances of IS, but we
attribute that to the relatively small absolute running time in which
case additional overheads cannot be mitigated by the new mechanism.

Keywords: GPGPU · CUDA Graphs · Parallel Computing · High-
performance computing · GPU Acceleration · Performance evaluation

1 Introduction

NVIDIA CUDA (Compute Unified Device Architecture) technology, for many
years already, has allowed programmers to parallelize code on GPU devices [5].
CUDA versions have progressively introduced new features and optimizations.
CUDA Graphs [7], investigated in this paper, were designed to tackle the over-
head associated with CPU-GPU interactions, especially when handling a large
number of small and/or interconnected tasks. CUDA Graphs allows to bundle
a series of CUDA operations into a single graph entity that can be executed
all at once. This reduces the frequency and cost of CPU-GPU communication,
including kernel launch overhead, as visualized in [4].

This paper aims to assess the performance of CUDA Graphs across a diverse
set of parallel applications. The main goal of this research is to compare the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_16

https://dx.doi.org/10.1007/978-3-031-97635-3_16
https://dx.doi.org/10.1007/978-3-031-97635-3_16


2 O. Diakun, P. Czarnul

performance of applications that use CUDA Graphs with traditional CUDA
versions without CUDA Graphs. This comparison will help identify situations
where CUDA Graphs offer performance improvements and where their use may
be less beneficial. Section 2 presents existing examples of applying CUDA Graphs
to various applications. Section 2 describes motivations and contribution of this
work. Section 3 specifies the set of selected benchmarks and its updating with
CUDA Graphs. Section 4 describes the conducted experiments, presents and
discusses the results. Section 5 presents a summary and potential future work.

2 Related work and our contribution

CUDA Graphs, introduced in CUDA 10, allow to express more complex exe-
cution scenarios in a form of a graph. Nodes of the latter can refer to kernel
launches, memory copies, and synchronization events. Edges between nodes de-
fine the dependencies. A particular node begins execution only after all its prede-
cessor nodes have completed. This effectively removes the overhead of CPU-side
stream synchronization. CUDA Graphs can effectively reduce the overhead asso-
ciated with launching individual kernels and improve overall application perfor-
mance [4]. One way of adopting the code to use CUDA Graphs is to encapsulate
and capture existing operations put into a CUDA stream, into a graph. This can
be done by calling cudaStreamBeginCapture() and cudaStreamEndCapture()

API calls. Alternatively, a graph can be created explicitly using cudaGraph

Create() and appropriate functions for definition of nodes and dependencies.
The two CUDA Graphs creation modes can be combined for effective code

in a similar scenario. In article [11], the author proposes code with 3 kernel
invocations where the first two are captured in a stream with static parameters
while a third kernel is being added manually with dynamic parameters to the
graph extracted with a call to cudaStreamGetCaptureInfo v2(). In terms of
performance, three versions were compared: without CUDA Graphs, with CUDA
Graphs with the recapture-then-update approach, using CUDA Graphs with the
aforementioned combined approach, the latter two giving speed-ups over the first
one: 1.22 and 1.63 respectively. Obviously, potential gains depend on the ratio
of the time spent on computations to communication as well.

Article [9] discusses combining CUDA Graphs with an Image Processing
Domain-Specific Language (DSL) and Hipacc, a source-to-source compiler. Bench-
marks were conducted across ten different image processing applications on two
different NVIDIA GPUs: the RTX2080 and the GTX680. The proposed approach
allowed to achieve a geometric mean speedup of 1.30 over Hipacc without CUDA
graph, 1.11 over CUDA graph without Hipacc.

Paper [12] discusses a novel compiler transformation technique that converts
OpenMP code into CUDA Graphs to enhance NVIDIA device programmability.
The approach combines high-level OpenMP’s high-level programmability with
CUDA’s performance benefits. The performance evaluation involved two bench-
marks: Saxpy, a structured benchmark with 1024 tasks, and Cholesky decompo-
sition, an unstructured benchmark with 1540 tasks. The evaluation showed that,
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for the Saxpy benchmark, the CUDA graph implementation reduced execution
time by approximately 78%, while the Cholesky decomposition saw a reduction
in execution time by approximately 93% when compared to their OpenMP of-
floading counterparts. It was noted, though, that CUDA Graphs significantly
increase the complexity and the number of lines of code needed, especially for
Cholesky decomposition. In work [3] authors conducted a study that involved
modifying a Breadth-First Search (BFS) application from a benchmark suite to
utilize CUDA Graphs, and comparing its performance to the original non-graph
version. The testbed system was equipped with an NVIDIA RTX 2060 GPU
and a Ryzen 5 3600x CPU. The BFS application from the Rodinia benchmark
suite was selected, duplicated, and modified to implement code with CUDA
Graphs. The results, for runs repeated 100 times, showed that for input sizes
of 524,288 nodes, the CUDA Graph implementation allowed to obtain a 14%
speedup compared to the non-graph counterpart, with a running time reduction
from 1836µs to 1610µs. On the other hand, for smaller input sizes, such as 8,192
nodes, the CUDA Graph version actually exhibited worse performance, with
the execution time 306µs – 7% slower than 285µs for the standard non-graph
version. The study indicates that while CUDA Graphs can offer performance
benefits, particularly for medium-sized workloads, the overhead associated with
graph instantiation can negate these benefits for smaller workloads.

Article [6] discusses the integration of CUDA Graphs in PyTorch, which is
aimed at accelerating PyTorch with advanced CUDA features. Using CUDA
Graphs resulted in up to a 50% reduction in CPU usage and an increase in
GPU utilization, which led to a significant speedup of up to 30% in the Mask R-
CNN model’s overall execution time. The article also illustrates how employing
CUDA graphs to capture the model leads to the elimination of CPU overhead
and synchronization issues resulting in a performance boost of 1.12 times for a
large-scale BERT model.

In the context of existing works, we aim at thorough assessment of CUDA
Graphs versus the traditional CUDA model. We do that by extending the well es-
tablished NAS Parallel Benchmarks (NPB) [2] (available at GMAP/NPB-GPU:
NAS Parallel Benchmarks for GPU) [1] with CUDA Graphs. We then performed
comprehensive comparison on four different GPUs. We discuss relative speed-up,
which refers to the difference in execution time between the approach without
and with implemented CUDA Graphs in relation to the time obtained for the
approach without CUDA Graphs.

3 Testbed workloads and our implementations with
CUDA Graphs

The collection of evaluated benchmarks consisted of algorithms Conjugate Gra-
dient (CG), Embarassingly Parallel (EP), Integer Sort (IS), Multi-Grid (MG),
CFD-related tasks (LU, SP) and one CFS-related task (BT), without Fourier
Transform (FT). For the latter, we did encounter unsuccessful verification of the
original code on one of the cards.
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For the CUDA Graphs implementations, we decided to use the stream cap-
ture mode. Details regarding implementation are available in the github reposi-
tory1. The implementation began with the creation of a stream to which kernel
functions would be assigned, so that they could then be captured. After that,
variables that will describe our graph were created. A bool variable ensures that
the graph will be created only one time, when set to false, and true flag allow
executing an already existing graph. To capture a stream it was necessary to cre-
ate a new, non default one, and assign desirable functions to it. After that, with
a call to the cudaStreamBeginCapture(stream, mode) function it was possible
to start capturing. The capturing of the graph could be easily terminated with
a cudaStreamEndCapture(stream, &graph1) call. To connect captured graph
with its execution name, function cudaGraphInstantiate(graphExec 1,

graph 1, NULL, NULL, 0) was used. Having that it was possible to finally call
an instance of created graph by cudaGraphLaunch(graphExec 1, stream) [8].

Unfortunately, the presented procedure would not work in every case. It
would not be optimal in situations where kernel functions calls are interspersed
with operations performed on the CPU, where, for example, the value of a vari-
able used in the kernel had to be changed. Such situations occurred in several
places in our implementation and we decided to use other CUDA functionalities
so that the mentioned values could always be available in the graph. One option
was to use CUDA Graphs with Dynamic Parameters as outlined in [11]. We
eventually chose the task-related variable which is allocated on the device and
stores the value calculated on the host, transferred via cudaMemcpy().

Another problem is a situation where the function we want to capture con-
tains a set of various other functions calling kernel functions. This situation
is problematic, because: firstly – it is possible to encounter a case similar to
the one presented previously, and secondly – it is possible that in certain func-
tions it will be necessary to copy data from device to host, e.g., using function
cudaMemcpy(). The solution to this is to replace the synchronous operation
with an asynchronous one. This also effectively requires to prepare an analogous
function and add the stream used for capturing within the function parameters.
Finally, we verified correctness of results by checking an appropriate flag already
implemented in the NAS NPB software.

4 Experiments

The foregoing benchmarks were evaluated on GPUs of various classes/architectu-
res: desktop/Turing NVIDIA GeForce RTX 2080, desktop/Ada Lovelace GeForce
RTX 4070 Ti, workstation/Turing Quadro RTX 8000 and server/Ampere A100
80GB PCle. System configurations for the 4 nodes are as follows: 2 x Intel(R)
Xeon(R) Gold 6130, NVIDIA GeForce RTX 2080, 256 GB RAM; 13th Gen
Intel(R) Core(TM) i7-13700K, NVIDIA GeForce RTX 4070 Ti, 32 GB RAM;
Intel(R) Xeon(R) Gold 6248R CPU, 2 x Quadro RTX 8000 + Quadro RTX 5000,

1 https://github.com/odiakun/NPB-GPU-CUDA-Graphs
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192 GB RAM; 2 x Intel(R) Xeon(R) Silver 4316 CPU, NVIDIA RTX A4500 +
NVIDIA A100 80GB PCIe, 256 GB RAM.

We have obtained results on every card for certain algorithm. We conducted
10 iterations for each application across different classes. The average value was
calculated alongside with the standard deviation. Detailed execution times are
presented for NVIDIA GeForce RTX 4070 Ti and A100 in Figure 1. Tables with
more detailed information are available under the link2.
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Fig. 1: Execution times per NAS Benchmarks and Class (for two cards)

For each of the cases a relative speed-up was calculated. The values of the
execution time obtained for the variant that does not take into account the
implementation of CUDA Graphs, were considered as the relative value.

In the following analysis, we focus on the comparison mainly of the larger
classes of the benchmarks and assume that gains/losses within [-1,+1]% range
are considered non-conclusive. This is because, for these classes, for the vast
majority of cases, standard deviation in mean (percentage) is also within the
[0,1]% range, although very often significantly below 1%. In very rare cases
it exceeds 1% but it is for relatively short execution times, for these classes.
Instance time is the execution time of a single kernel instance, and instance
number is the number of kernel instances that have been executed for a given
algorithm. These values have been weighted by the proportion of total execution

2 https://cdn.files.pg.edu.pl/eti/KASK/CUDA Graphs additional/CUDA Graphs
paper detailed data.pdf
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time that each kernel consumes. Data relevant to configurations giving the best
results are shown under the link2. Weighted values are used for axes of the
following figures.

Speed-ups for the tested configurations are shown in Figure 2. It can be
observed that gains in application duration were achieved primarily in cases
where there were relatively many short-lived kernels.

In the case of the NVIDIA GeForce RTX 2080, there are gains for the CG
algorithm for classes B and C with values of 2.97% and 3.41%. As for the other
algorithms, LU, SP, IS, BT and EP reach values that are close to zero. On the
other hand, one can notice a negative value for the MG (-9.44%) algorithm. In
the latter case, however, absolute execution times are very low, in which case
additional overheads might not be mitigated by potential benefits.

For the NVIDIA GeForce RTX 4070 Ti, for the LU algorithm, the profit
values are: 0.36%, 1.58% and 2.57%, with the value of 0.36% again being too
small to make a conclusion. For the CG algorithm, the results are: 2.89%, 3.83%
and 4.13%. The values for the IS, SP and BT algorithms are again too small
for conclusive statements. The MG algorithm (-5.60%) again shows a negative
value, but its execution times are very small in absolute terms.

For the NVIDIA Quadro RTX 8000, there are consistent gains for CG (2.11%,
3.46% and 3.84%). The BT (-1.34% and -4.08%) and MG (-8.56%) algorithms
are characterized by slight negative values and in this case the result of the IS
algorithm for one of the computing classes (-3.88%) also signals a decrease in
the value of the application duration.

For the NVIDIA A100 80GB PCIe, the noticeable difference from the previ-
ous GPUs is that the LU algorithm here features significant gains in application
time with values of 1.45%, 8.05% and 11.87%. With the values decreasing as
the weighted instance time of a single instance increases. For the CG algorithm,
gains for two classes amount to 2.78% and 3.56%, similarly to the results on the
other GPUs. Negative values, on the other hand, are visible for MG (-19.98%)
and IS algorithms for two classes (-2.27% and -10.28%). The remaining cases
have values that are too small to be considered significant.

For all the cards, the MG and IS algorithms are characterized by short exe-
cution times, even for larger computational classes (B and C). In most cases, the
execution times of these applications, in their unmodified forms, do not exceed
1 second. For class D and NVIDIA Quadro RTX 8000, these times are 15.42
seconds for the IS algorithm and 17.04 seconds for MG. In comparison, the LU
algorithm for class D on the same card has an execution time of 301.76 seconds,
and the CG algorithm 273.48 seconds. On NVIDIA A100 80GB PCIe, where the
MG algorithm achieves a time of 6.17 seconds and IS 3.96 seconds. For the LU
and CG algorithms, these times are 66.18 seconds and 24.16 seconds, respec-
tively. For both of these cards, these times are of different orders of magnitude.
With such short execution times, the implementation of CUDA Graphs may
introduce some fixed overheads and could slow down the application.
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Fig. 2: Speed-ups, Weighted Instance Time in relation to Weighted Instance
Number for every GPU

5 Summary and Future Work

This work is one of the first to explicitly compare CUDA and CUDA Graphs.
This paper presents an experimental study based on the GPU implementation
of NAS Parallel Benchmark. The research presented in this work includes the
evaluation of the aforementioned benchmarks in their unaltered form on NVIDIA
GeForce RTX 2080, NVIDIA GeForce RTX 4070 Ti, NVIDIA Quadro RTX 8000,
and NVIDIA A100 80GB PCIe high-performance cards. Usage of CUDA Graphs
was then incorporated by us into all applications comprising the NAS Parallel
Benchmarks, followed by reevaluation on the same hardware, which allowed to
compute a relative speed-up. The CG algorithm shows the most consistent gains
across various cases. Depending on the card, CUDA Graphs yielded gains of 2
to over 4%. For LU, gains were largest on the A100 and reached even 11.87%.
For all of the aforementioned cards, low negative gain values were observed for
the MG algorithm (-9.44%, -5.60%, -8.56%, and -19.61%) that we attribute to
small absolute running times and impact of fixed overheads of CUDA Graphs.
It can be concluded that the CG algorithm consistently yields gains, and the
LU algorithm shows improvements in about half of the analyzed cases. Other
benchmarks resulted in execution times similar for both cases.
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For the future, detailed investigation of the GPU architecture impact could
be performed, along with integration of CUDA Graphs into a higher-level DAG
processing framework in a cluster [10].
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