Fast prediction of job execution times in the
ALICE Grid through GPU-Based Inference with
Quantization and Sparsity Techniques

Tomasz Lelekl ,*[O(]O()f()()017726876484]’ Szymon
k2,3,*[0009700067755770157}7 Maciej Wielgosz2,3[0000700027440172957}

1[0000—0002—3082—4209]

Mazure , and

Bartosz Balis

! Faculty of Computer Science, AGH University of Krakow, al. Mickiewicza 30,
30-059 Krakow, Poland
{tlelek, balis}@agh.edu.pl
2 Faculty of Computer Science, Electronics and Telecommunications, AGH
University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
{smazurek, wielgosz}@agh.edu.pl
3 ACC Cyfronet AGH, Nawojki 11, 30-072 Krakow, Poland

Abstract. We propose a latency-optimized neural network model to
dynamically predict job execution times for the ALICE experiment at
CERN, replacing static Time-To-Live (TTL) allocations. Utilizing Nvidia
A100 GPUs, we optimize inference latency via FP16 and INT8 quanti-
zation, 2:4 sparsity, quantization-aware training, and graph compilation.
Results show that FP16 and sparsity reduce latency for larger batches,
while INTS8 is optimal for single-sample predictions. For single-sample
online inference, static INT8 quantization achieves a median 0.38 ms pre-
diction time, a 1.8x improvement over the 0.71 ms baseline. The model
achieves a 1.9-hour RMSE, improving on the 14.23-hour RMSE of current
TTL assignments. With sub-40ms inference latency on GPU hardware,
this work demonstrates how NN optimization can help achieve perfor-
mance demands of large-scale distributed computing systems.

Keywords: Deep learning - ALICE - latency optimization - high-energy
physics - real-time inference - job scheduling

1 Introduction

Al is increasingly important in large-scale computing environments, where vast
amounts of system data are continuously generated. Effectively analyzing this
data is crucial for efficient administration, maintenance, and resource manage-
ment [7]. Large-scale computing is essential in high-energy physics experiments,
such as ALICE at CERN. The ALICE Grid, with 60 global computing clusters,
runs 500k daily jobs running simulations and analyzing data. With up to 200k
concurrent jobs, efficient scheduling is crucial. Currently the job scheduling al-
gorithm uses Time-To-Live (TTL) values (expected execution time), but these

* Equal contribution.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

2 T. Lelek et al.

are often overestimated, leading to suboptimal resource allocation. While accu-
rate execution time estimation could improve job scheduling, a prediction service
needs to be very fast due to the high job throughput. Neural network inference
and training acceleration through pruning, quantization, and other optimiza-
tions is well-studied [9, 13]. However, research often emphasizes memory foot-
print and performance degradation resistance [3]. Inference speed is frequently
evaluated with fixed network architectures, data modalities, and batch sizes, lim-
iting insight into technique effectiveness [11, 3]. Evaluations also tend to focus
on complex CNNs or transformers with many parameters [9].

In this work, we develop a neural network model to predict execution times of
ALICE Grid jobs, based on their input parameters and machine characteristics.
We then analyze inference acceleration techniques, including quantization, semi-
structured sparsity, and graph-based model compilation to reduce the inference
latency, critical for optimizing job scheduling in the ALICE large-scale com-
puting infrastructure. Our key contributions include demonstrating that INT8
quantization achieves a 1.8x speedup for single-sample inference, while semi-
structured sparsity improves large-batch processing by up to 4x. We also high-
light the trade-offs in quantization strategies, noting that weight quantization
is highly effective, whereas activation quantization requires careful application.
Finally, we present a scalable framework which can be considered as a blueprint
for deploying deep learning optimizations, enhancing efficiency at large scale.
These contributions provide a guidance for future large-scale scientific projects,
outlining how deep learning optimizations can be integrated into mission-critical
workflows where latency, scalability, and accuracy are essential.

The paper is organized as follows. Section 2 outlines research context and
methods. Section 3 presents experimental results. Section 4 contains discussion
and concluding remarks.

2 Methods

2.1 Architecture of the ALICE system

The architecture of the ALICE system, extended with the Prediction Service
which is the subject of this research, is shown in Fig. 1. This service should
efficiently predict the job runtime (TTL) based on its submission parameters
specified by the user, and the target machine. In addition to the obvious re-
quirement of minimizing the TTL prediction error, the model deployed within
the prediction service must perform the predictions as fast as possible. In our
scenario, the high job arrival rate requires that the total time from job submis-
sion to receiving the TTL prediction from the service be under 40 ms.. While
the latency will be influenced by each component of the new service, here we
focus solely on the deep learning model inference time.

2.2 Hardware accelerators in AI

In modern DL models, most computations fall into the matrix multiplication
and addition category (MMA). The nature of these operations allows for mas-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

Fast prediction of job execution times in the ALICE Grid 3

CERN

Site 1
Submitted job H Job Queue Job Broker LI

Predict TTL A A

Prediction Service
Deploy Collect
chosen runtime data
model

Compute Host
1
Compute Host
N

Input Features

« Connection to
available
. compute sites

Site N

Model Repository

1

Store trained F?t?h Datalake Storage :
model training
L Model Training data Compute Host
Cyfronet Environment N

AGH

Fig. 1. The architecture of the ALICE computing framework, integrating CERN’s in-
frastructure and the proposed Al-based prediction service. Elements of the architecture
discussed in this paper are marked in green.

sively parallel execution, as most atomic operations on separate elements of the
matrices can be done independently. This fact led to the development of special-
ized hardware accelerators focusing on parallel-vector operations. Among those,
graphics processing units (GPUs) are the most widespread. They are rapidly
evolving, with each generation introducing new, faster architectures with sup-
port for additional features, such as operations on floating-point values with
reduced precision or higher I/O bandwidth.

The Nvidia Ampere GPU series are one of the most recent developments in
this domain. They introduce numerous improvements compared to the previous
ones, such as the new generation of tensor cores; extended support for numeric
precision formats, and cache memory expansion [2]. Our experiments utilize
this type of GPU along with the following techniques: semistructured sparsity
[11], quantization [4], and model compilation with the Pytorch native compiler,
Inductor [1].

2.3 Neural network architecture and experiment design

To solve the TTL prediction problem posed, we created a simple feedforward
neural network. The architecture consisted of blocks of linear and batch nor-
malization layers followed by ReLU activation [8,12]. The last block was an
exception as it contained only the linear layer.

In the sparse runs, pruning was applied to all linear layers except the last
one, as the single output neuron did not meet the divisibility criterion for 2:4

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

4 T. Lelek et al.

sparsity patterns. The number of input neurons was set to 19840 for sparse runs
and 19809 for dense ones. The difference arises from the requirement that 2:4
sparse tensors must have dimensions divisible by 32 or 64 for the FP32 and BF16
precisions, respectively. To meet these criteria, zero-padding was applied to the
input feature vector in sparse runs.

To assess model latency, forward pass execution times were measured after
applying the optimization techniques discussed earlier. The measurements in-
cluded median and P99 values across 1000 trials, with each trial preceded by
a GPU warm-up period not included in the recorded results. Latency measure-
ments were conducted for batch sizes ranging from 1 to 16384, each being a
consecutive power of 2.

For final model evaluation, the optimizations yielding the highest inference
time reduction for given batch size ranges were selected. These models were
trained and validated using the 10-fold cross-validation method, assessing the
mean squared error of the average root (RMSE), the maximum prediction error
and the median error across all folds. The network training process continued
for up to 100 epochs, with early stopping implemented when no validation loss
improvement occurred for 5 consecutive epochs. The AdamW optimizer [10] was
used with a learning rate and weight decay set at 1073. The validation subset
was extracted as 10% from the training data for each fold, ensuring robust model
evaluation.

2.4 Experiments setup and used hardware

The experiments were carried out within the HPC cluster, using a single Nvidia
A100 GPU, up to 16 cores of AMD EPYC 7742 CPU and up to 200 GB of RAM.
The experimental code was created with the Pytorch 2.5.1 framework [1], using
the CUDA 12.1 toolkit for GPU integration. For sparse matrix operations, we
used CUTLASS [6] 3.4.0 as a backend for sparse matrix operations.

3 Results

3.1 Analysis of available features and job execution times in the
past ALICE workloads

In the existing ALICE scheduling system, the job execution times are assigned
static TTL values, determined manually by the operators. These values are often
highly overestimated to ensure that jobs are completed successfully, even on the
slowest CPUs in the grid. Although this conservative approach prevents job
failures due to insufficient time, it is obviously suboptimal from the perspective
of effective resource utilization.

To understand the extent of the inefficiencies, we calculated the RMSE be-
tween operator-defined TTLs and actual job execution time. Analysis has shown
that the mean RMSE was equal to 14.23 hours, the median to 15.12 hours, and
the maximal RMSE observed was 23.89 hours. Most jobs are assigned TTLs that

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

Fast prediction of job execution times in the ALICE Grid 5

exceed 20 hours, while their actual execution time in most cases is considerably
shorter. Thus, it is clearly visible that there exists vast room for improvement
to achieve more accurate execution time predictions.

Based on the analysis of historical job data, we have identified 20 categorical
and numerical features that describe the job when it is submitted. Categorical
features were encoded into one-hot vectors, with the missing categorical values
being treated as a separate category. For the numerical features, missing data was
filled with the median value calculated across all jobs in the data set. Next, each
numerical feature was independently z-score standardized. Lastly, we combined
categorical and numerical features into a single one-dimensional vector that was
used as input for the network.

3.2 Evaluating inference latency for chosen optimization techniques

We first evaluated the forward pass time of the constructed network for a given
batch size. The median and P99 latency are shown in Fig. 2. The results show
some visible trends. It can be seen that using BF16 precision leads to a lower
inference latency in all scenarios. Even when weights or activations were quan-
tized with lower precision and BF16 was used only to represent activations, it
still provided performance advantages. Interestingly, in runs using low-precision
quantization, the latency was usually drastically higher than in the unoptimized
baseline model. An exception is a single sample performance of a model with
statically quantized INTS8 weights. These two phenomena can be explained by the
overhead introduced with the quantization techniques. In the case of static weight
quantization, the activations of each layer are computed in the input precision
(either FP32 or BF16 in our case). To perform such operation, weights have to
be casted into the corresponding precision to compute activations, thus introduc-
ing additional overhead. However, when the forward pass is bound by memory
transfer between GPU vRAM and streaming multiprocessor cache, copying of
data in lower precision is faster than in higher ones. As the number of samples is
small, the overhead caused by additional computation does not yet impact the
processing time in a significant way. When the batch size increases, the overhead
of quantization starts to manifest, showing lower inference speeds. Similar phe-
nomena occur in dynamic quantization. As activations are in INT8 precision and
weights are INT4, casting is also required. Furthermore, dynamic quantization
of activations requires computing quantization parameters on the fly, adding an-
other source of delay. Sparse runs perform worse than baseline in small batch
sizes; however, they outperform all other methods when the batch size starts to
grow. It is caused by additional operations required to properly process com-
pressed sparse tensors [5]. Lastly, we observe that graph compilation leads to
slight speed-ups in each case. This is in contrast to what could be expected,
although we speculate that the cause lies in the lack of utilization of CUDA
graphs, which we purposely disabled.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

6 T. Lelek et al.

—e— QAT-INT8AD-INT4W-Dense-MA 102
—— INT8W-Dense-MA
102 —v— Sparse
—— Dense-MA
= —=— Sparse-MA
= Dense (Baseline) 10!
g 10!
E
100 10°
102
102
m
é 101
aE) 10!
E
10° 10°
20 22 24 26 28 210 212 214 20 22 24 26 28 210 212 214
Batch Size Batch Size

Fig. 2. Forward pass latency with different optimization techniques applied depending
on an input batch size. Charts in the top show median forward pass time, while bottom
ones present P99 values. The left and right colums refer to measurements in BF16 and
FP32 activation precision, respectively. QAT denotes quantization aware training; AD
refers to dynamic activation quantization in corresponding precision, and W refers
to static weight quantization with corresponding precision. In both BF16 and FP32
activation precisions, we refer to dense run with no optimizations as a baseline.

3.3 Evaluating the performance of the obtained optimized models

We chose to evaluate the performance of only specific models based on the pre-
vious latency measurements, each showing an advantage for specific batch size
ranges. The optimization techniques chosen were as follows: BF16 activation pre-
cision, BF'16 activation precision combined with semistructured weight pruning,
and static weight quantization to INT8 format, with activations remaining in
BF16. The FP32 dense network served as a baseline. In each case (including
baseline), the compilation of the model was added, as it was safe to assume that
it will not affect the qualitative performance of the model. In previous experi-
ments, it was also shown that it consistently provided a speed-up of inference.
The results, along with brief descriptions of advantages in latency reduction, are
shown in Tab. 1.

4 Discussion and conclusions

In this study, we have presented a latency-optimized neural network to predict
workload execution time in the ALICE computing infrastructure. We have exam-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

Fast prediction of job execution times in the ALICE Grid 7

— Method| ppgy BF16 BF16-Sparse |BF16-INT8W
Metric
RMSE 1.93 £0.01 1.92 +0.01 1.91 £0.01 1.91 +0.1
Avg. max error 19.11 +0.67 19.14 +0.71 18.92 +0.06 19.1 £0.67
Avg. median error | 0.51 £0.01 0.48 £0.01 0.47 £0.01 0.48 +0.01
Advantage in Baseline Simple to use, Significant | Speed-up when
latency reduction moderate speed-up for processing
speed-up larger batches | single sample

Table 1. Average metrics summarizing 10-fold cross validation evaluation of the net-
works with different latency reduction techniques applied, = SEM. Each run included
model compilation and dense weights, unless stated otherwise. Best results are high-
lighted in bold. We also note the advantages of each technique for inference speedup.

ined different combinations of optimization techniques, including semi-structured
sparsity, mixed-precision training, and inference, static and dynamic quantiza-
tion into low-bit representations of weights and activations, quantization-aware
training, and model compilation algorithms. We performed our analyses on a
wide range of input batch sizes, spanning far beyond our use case, to provide
insight for researchers looking for different use cases in the future. We find that
the optimal latency reduction technique varies depending on the input batch
size. Semi-structured sparsity is suitable for larger batch sizes, while for smaller
ones, it can introduce additional overhead. Quantization has to be applied with
caution, as it can introduce additional overhead. This is especially true for dy-
namic quantization techniques, where the number of additional operations is
even higher. Despite the obvious benefits of reducing the memory footprint, im-
proper use of quantization can lead to a large decrease in processing speed.

During the final evaluation, our model greatly reduced the wall-time predic-
tion error compared to the baseline obtained manually assigned by the infras-
tructure operators. The average prediction RMSE on test subsets was at the
level of 1.9 hours, while for manual assignment, it was 14.23 hours across the
available historical data. Importantly, the evaluated latency reduction methods
did not result in the degradation of the final model performance. Based on the
experimental results, we conclude that the proposed model is suitable as the
backbone of the TTL estimation system within the ALICE architecture.

This work can be expanded in several directions. From the perspective of
the predictive system design, extended evaluations will be made in terms of
latency measurement and reduction, seeking to find further optimization targets.
Secondly, a comprehensive evaluation of newer hardware can be performed. With
the GPU market rapidly evolving, it is possible that using newer ones alone
would yield better speedups. Other methods of latency reduction should also be
explored, i.e. structured pruning or different quantization techniques. The model
architecture or feature processing could be expanded to reduce the prediction
errors even more. Evaluations on more extended datasets are also needed to
further prove the robustness of the model.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

8 T. Lelek et al.

Acknowledgments. This work is co-financed by the Polish Ministry of Science and
Higher Education under Agreement No. 2022/WK /01 and through the PMW program.
We gratefully acknowledge Polish high-performance computing infrastructure PLGrid
and the Academic Computer Centre Cyfronet AGH for providing computer facilities
and support within computational grant no. PLG /2024 /017775 and PLG/2024/017612.
The research presented in this paper received partial financing from the funds assigned
by Polish Ministry of Science and Higher Education to AGH University of Krakow. Re-
search project supported/partly supported by program ,Excellence initiative — research
university” for the AGH University of Krakow.

Disclosure of Interests. Authors declare no conflicts of interest.

References

1. Ansel, J., et al.: Pytorch 2: Faster machine learning through dynamic python byte-
code transformation and graph compilation. In: Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (2024)

2. Choquette, J., Gandhi, W., Giroux, O., Stam, N., Krashinsky, R.: NVIDIA A100
tensor core GPU: Performance and innovation. IEEE Micro 41(2), 29-35 (2021)

3. Danhofer, D.A.: Inducing semi-structured sparsity by masking for efficient model
inference in convolutional networks. ArXiv (2024)

4. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey
of quantization methods for efficient neural network inference. CoRR (2021)

5. Goumas, G.I., Kourtis, K., Anastopoulos, N., Karakasis, V.P., Koziris, N.: Perfor-
mance evaluation of the sparse matrix-vector multiplication on modern architec-
tures. The Journal of Supercomputing 50, 36-77 (2009)

6. Huang, X., Zhang, X., Yang, P., Xijao, N.: Benchmarking GPU tensor cores on
general matrix multiplication kernels through cutlass. Applied Sciences (2023)

7. Tlager, S., Muralidhar, R., Buyya, R.: Artificial intelligence (ai)-centric manage-
ment of resources in modern distributed computing systems. In: 2020 IEEE Cloud
Summit. pp. 1-10 (2020)

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proc. 32nd Int. Conference on International
Conference on Machine Learning - Vol. 37. p. 448-456. ICML’15, JMLR.org (2015)

9. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for
deep neural network acceleration: A survey. Neurocomputing 461, 370-403 (2021)

10. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2017)

11. Mishra, A.K., et al.: Accelerating sparse deep neural networks. ArXiv (2021)

12. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: International Conference on Machine Learning (2010)

13. Wrobel, K., Karwatowski, M., Wielgosz, M., Pietroni, M., Wiatr, K.: Compression
of convolutional neural network for natural language processing. Computer Science
21(1) (Jan 2020). https://doi.org/10.7494 /csci.2020.21.1.3375

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_12 |

https://dx.doi.org/10.1007/978-3-031-97635-3_12
https://dx.doi.org/10.1007/978-3-031-97635-3_12

