
Prototype-pairs Decomposition
for Extracting Simple and Meaningful Rules

Marcin Blachnik1[0000−0003−3336−4962],
Mirosław Kordos2[0000−0002−2031−7561], and

Daniel Dąbrowski1[0009−0007−4250−7060]

Silesian University of Technology,
Department of Industrial Informatics,

40-019 Katowice ul. Krasińskiego 8, Poland
{marcin.blachnik, daniel.dabrowski}@polsl.pl

University of Bielsko-Biała,
Department of Computer Science and Automatics,

43-309 Bielsko-Biała ul. Willowa 2, Poland
mkordos@ubb.edu.pl

Abstract. We present a preliminary study of a model-agnostic method
called prototype pair decomposition that generates simple and accurate
decision rules from datasets. The research focuses on its application to
decision trees. It starts by selecting representative prototypes obtained
by a prototype construction method, then pairs of prototypes from op-
posite classes are determined. These pairs define subspaces containing
a fragment of the decision boundary in which a shallow decision tree
is applied to extract simple decision rules consisting of a few premises.
The results indicate that the proposed solution allows the extraction of
locally competent simple rules that are comparable in terms of classifi-
cation accuracy to a large and complex set of global rules obtained from
standard decision trees.

Keywords: Explainable AI · Decision trees · Prototype-Based Learning

1 Introduction

The explanation of data and the decisions taken by machine learning models
have been investigated since the beginning of AI research [12]. The problem is
constantly gaining importance as the data get bigger and more complex. It is
important that the user not only knows the prediction result, but also under-
stands why a given result was reached by the model. This allows users to trust
the models, which in many cases is a condition to apply them in practice [10].

Machine learning methods are often categorized as black boxes or white
(glass) boxes. Black box models, like kernel methods, neural networks, and
ensembles (e.g., random forest), typically offer high accuracy but limited in-
terpretability. In contrast, white box models—such as decision trees, sequential
covering, case-based reasoning (CBR) [4], and prototype-based rules [2]—provide
interpretable decisions, often at the cost of accuracy.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


2 M. Blachnik, M. Kordos, D. Dąbrowski

To interpret black-box models, two main approaches are used [11]: model-
independent methods and those tailored to specific models. Model-independent
methods extract rule-based explanations by labeling data with predictions from
black-box models. For instance, [7] approximates neural network activations with
linear fragments to extract rules. Knowledge extraction from deep networks using
CBR is shown in [8]. While kernel-based models interpretation as prototype-
based rules can be found in [1].

Another strategy is local interpretation, as in LIME [10], which fits a linear
model near the query point—later extended with autoencoders [13]. Graphical
explanations like SHAP [6] and saliency maps [14] offer local insights, particularly
for convolutional networks.

In this paper, we propose for the first time a preliminary study on a model-
agnostic method for rule extraction that leverages problem decomposition through
a technique called prototype pair decomposition (PPD) to improve the incor-
porability of decision boundaries in classification problems. The proposed algo-
rithm integrates case-based reasoning with classical crisp rules by constructing
locally competent and interpretable rules. This is achieved by identifying a pair
of adversarial (enemy) prototypes, which are prototypes of opposite classes. This
pair partitions the decision boundary of the classification problem into regions
by assigning each training sample to it nearest pair of prototypes. Since the pro-
totypes belong to different classes, the resulting pair defines a fragment of the
decision boundary that is locally approximated by a simple set of rules. From
a system-wide perspective, the proposed solution decomposes the classification
problem into regions formed by subsets of the original dataset. Each region is
identified by a pair of prototypes, and in each region, an independent model can
be trained.

In our study we use a decision tree as a reference model for measuring the
benefits of the proposed solution. We show that the rules obtained from decision
trees with the PPD algorithm are much simpler that those generated by standard
decision trees trained on the entire training data.

2 The prototype-pairs decomposition algorithm

The PPD algorithm (see sketch 1) requires a training set T = {X,y} and the
number of prototypes k as input. It is assumed that yi ∈ {P,N}, that is a binary
classification problem.

PPD starts by selecting representative prototypes obtained by any instance
selection or prototype construction method [3]. We use a clustering-based pro-
totype selection, clustering each class separately. Then the set of possible pairs
U is determined by identifying the nearest positive and negative prototype for
each training sample (adversarial prototypes). Thus, each pair consists of one
instance from a positive and one from a negative class. The regions are encoded
using the Cantor pairing function which allows encoding a pair by a single integer
value. Each pair defines the decision boundary of the nearest neighbor classifier.
The pairs define subspaces also called regions, which are the key concept of the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


Prototype-pairs Decomposition for Extracting Simple and Meaningful Rules 3

Algorithm 1 A PPD algorithm
function PPD(X,y,k)

(Pp,Pn)← FindPrototypes(X,y, k)
r← zeros (1, n) //Create vector to store region identifiers
u = ∅
for all i ∈ {1 . . . n} do

a← argmin
∀pjinPP

(D (pj ,xi)) //Get nearest positive samples

b← argmin
∀pjinPN

(D (pj ,xi)) //Get nearest negative samples

z ← CantorPairingFunction(a, b)
u = u ∪ z //Set of unique regions
ri ← z //Assign i’th vector to region z

end for
s← GetRegionStatistics(X,y, r)
z ← GetIncorrectRegion(s)
while z ̸= ∅ do

g [g = z]← ∅ //Set all values in g equals z to None
u← u \ z
X′ ← UnassignedSamples(X, r)
r′ ← AssignRegion(X′,u,PP ,PN )
r← Update(r, r′)
s← GetRegionStatistics(X,y, r)
z ← GetIncorrectRegion(s) //Get region which doesn’t fulfil given statistics or ∅

end while
return r,u //Return array assigning each training vector to a particular region
//and a set of regions.

end function

Fig. 1: A visualization of the PPD algorithm showing training samples (purple
and dark blue dots), prototypes (red markers), pairs (linked prototypes), and
the obtained regions encoded by the background color.

algorithm. Next the regions with the fewest samples and highest unbalanced
ratio are pruned. The procedure is repeated until all regions satisfy the given
properties.

Next, the process of training the decision trees for each region begins. Each
of the decision trees is trained on the subset (region) of the original training set.
The size of the regions scales inversely with the number of regions K. The total
computational complexity of the proposed method is the sum of the complexities
of the PPD algorithm (O(n)) and of the decision trees trained on subsets of the
samples. On average it is O

(
n+ n log

(
n
K

))
.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


4 M. Blachnik, M. Kordos, D. Dąbrowski

Algorithm 2 An AssignRegion algorithm used for prediction and reassigning
regions which do not fulfill statistical requirements.

function AssignRegion(X,u,PP ,PN )
n← ∥X∥
for all i ∈ {1 . . . n} do

for all u ∈ u do
(pP ,pN )← CantorUnPairingFunction(u) //Get prototypes defining region u
d← D (pP ,xi)

2 + D (pN ,xi)
2 //Get distance to pair of prototypes

if d < dmin then //Find smallest distance
dmin ← d
z ← u

end if
end for
gi ← z //Assign i to region z

end for
return g

end function

Visualization of the PPD algorithm is presented in figure 1. After defining the
regions that are stored in u (here we have K = ∥u∥ regions), a small decision
tree is trained using samples within the region. This can be parallelized and
executed for each region independently. As the regions contain a relatively small
subset of samples, a fragment of the decision boundary which is contained inside
a region can be approximated with a simple set of rules. This ensures that the
rules are clear and easy to interpret, usually consisting of just a few premises.
Since a decision tree is one of the most popular methods for rule extraction,
supporting very good scalability, it becomes the first choice for our experiments,
but other rule extraction methods can also be used.

During prediction, PPD starts by identifying a region for each test sample
using the AssignRegion function presented in sketch 2. The arguments of this
function are: a set of test samples X, a set of region identifiers u, and a position
of prototypes PP ,PN . Then, the main procedure starts by iterating over all test
samples. Next, it iterates over a set of possible region identifiers u. Each region
identifier is then decoded to the corresponding prototypes PP ,PN using the
inverse Cantor function. Then, the nearest pair is determined by the minimum
sum of squared distances to the positive and negative prototypes of the pair.
Finally, when all samples in X have a pair of prototypes assigned, the final
classifier starts. In a loop, all samples that share the same region are selected
and the decision tree related to that particular region is applied to that samples.

3 PPD with the decision trees. Toy example

To better explain the PPD algorithm, a toy example is presented, where the
PPD algorithm is applied to a binary classification problem.

Figure 2d shows the obtained decision boundary where the input space is
divided into 3 regions marked with straight lines. Within each region, a simple
decision tree is constructed. In this example, we set the maximum depth of
the tree to 2. As a result, three trees are created, as shown in Figure 2a,2b,2c.
To show the benefits of the proposed algorithm over the classical decision tree,
the decision tree that achieves a comparable prediction performance is shown

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


Prototype-pairs Decomposition for Extracting Simple and Meaningful Rules 5

(a) Region 1 (b) Region 2 (c) Region 3

(d) PPD with DT (e) DT without PPD (f) The decision tree

Fig. 2: A comparison of the decision borders and the trees obtained with PPD
(a),(b),(c),(d) algorithm and without PPD algorithm (e),(f)

in Figure 2e and its decision border is visualized in Figure 2f. Comparison of
these two examples clearly shows that the rules generated by PPD regions with
decision trees are much simpler and easier to understand.

4 Experiments

To verify the performance of the PPD algorithm with internal decision trees, we
evaluated its prediction accuracy as a function of the depth of internal PPD trees
vs. the accuracy of classical decision trees and the influence of PPD parameters
on its prediction accuracy using a 10-fold cross-validation.

The software used for the experiments was created in Python, Scikit-learn [9],
imbalanced-learn libraries [5] and our own PPD library. It is available at github.
com/mblachnik/Prototype-Pair-Ensemble/tree/24_PPD_Tree. The datasets
obtained from www.openml.org present complex two-class classification prob-
lems with a non-linear decision boundaries.

4.1 PPD vs Standard Decision Tree. Tree Depth Comparison

In this section we evaluate the dependencies between size and accuracy of stan-
dard decision trees vs. of PPD with small trees inside the PPD regions.

Table 1 shows that for the same accuracy of both methods, standard decision
trees on average required 8.56-9.88 premises of a rule, while PPD with trees
required only 3-6 rule premises. Moreover, the number of rules in standard trees
varies between 185 and 882, while for PPD with trees only 7 to 26 rules are
required, with additional prototype-based rule for region identification.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

github.com/mblachnik/Prototype-Pair-Ensemble/tree/24_PPD_Tree
github.com/mblachnik/Prototype-Pair-Ensemble/tree/24_PPD_Tree
www.openml.org
https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


6 M. Blachnik, M. Kordos, D. Dąbrowski

Table 1: Datasets used in the experiments
Decision tree PPD(Tree)

dataset samples attr. unb. ratio Acc Std depth leaves Acc Std depth leaves # reg.

codrnaNorm 488565 8 0.5 95.48 0.08 9.88 882 95.05 0.11 4.00 15.18 33

electricity-normalized 45312 8 0.738 83.77 0.30 9.50 550 83.67 0.59 5.00 26.20 25

covtype 581012 54 0.952 81.25 0.13 9.73 691 81.23 0.71 5.00 26.83 12

banana 5300 2 0.813 88.77 1.20 8.92 237 88.75 1.27 3.00 7.33 6

ring 7400 20 0.981 85.07 0.79 8.56 185 84.31 1.77 6.00 23.71 14

twonorm 7400 20 0.998 84.61 1.45 8.86 344 83.31 1.98 5.00 25.70 10

(a) CodrnaNorm (b) Covtype (c) Electricity-normalized

Fig. 3: Relation between the prediction performance and depth of the tree. The
number of regions for PPD is given in brackets

To obtain accuracy for various tree depths PPD was configured as follows:
minimum samples per region: 400, unbalanced rate: 0.2, and prototypes obtained
with k-means clustering with 10 clusters per class (in total 20 prototypes were
selected). The obtained results are shown in Figure 3. It can be seen that PPD
allows for a significantly simpler representation of the rule base. As trees are
constructed inside the PPD regions, they can be much simpler. The maximum
number of leaves in a decision tree is 2depth+1. As can be observed, PPD with
local trees of depths 2 to 3 and 10 regions allows for an equivalent accuracy to
standard trees of depth 6 to 7.

4.2 Influence of PPD Parameters on its Performance

First, the influence of the number of clusters on the number of regions was
analyzed. The obtained results can be divided into two sets of similar behavior:
large datasets and small datasets. For large datasets (CodrnaNorm, Electricity-
normalized, Covtype) the number of clusters scales linearly with the number of
regions, almost independently of the value of min_support. An example for the
CordaNorm dataset is shown in Figure 4a. For smaller datasets low min_support
leads to a higher number of regions, while large min_support merges the smallest
regions into the larger ones, and the final number of obtained regions gets fixed
as shown in Figure 4b for Ring dataset.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


Prototype-pairs Decomposition for Extracting Simple and Meaningful Rules 7

(a) Clusters-Regions large (b) Clusters-Regions small (c) Regions-Accuracy

Fig. 4: The influence of model parameters on its performance. 4a Relation be-
tween the number of clusters and the number of obtained regions for CordaNorm
dataset - an example of a large dataset. 4b the influence of the number of clusters
on the number of regions for the Ring dataset - an example of a small dataset.
4c relation between the prediction performance and the number of regions for
the CordaNorm (large) dataset. In the legend, in brackets is given the value of
min_support.

Second, the influence of the number of regions on model prediction perfor-
mance was analyzed. Similarly, here, different behavior was observed with respect
to the size of the dataset.

For larger datasets, we observed an increase in prediction performance with
the growth of the number of regions, as this allows better prototypes to be
found and small regions to be removed, as shown in Figure 4c. Consequently, a
higher accuracy can be achieved. For smaller datasets, the relation between the
number of regions and the prediction performance is less regular and leads to
classification performance fluctuations because the number of regions is almost
constant.

5 Conclusions

The proposed prototype-pairs decomposition (PPD) algorithm combines case-
based reasoning with local rule extraction via in-region decision trees. It produces
simpler rule sets than standard decision trees and balances global and local
interpretability. This hybrid approach offers an advantage over purely global
methods, especially on large datasets with complex decision boundaries.

The application of PPD to multiple class problems, to high dimensional
spaces and to models other than decision trees will be the subject of our fu-
ture research.

Acknowledgments. The research was supported by the Excellence Initiative – Re-
search University program implemented at the Silesian University of Technology, year
2024, project number 11/040/SDW/10-21-01 and the research project BK-227/RM4/2025
funded by the Silesian University of Technology

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11


8 M. Blachnik, M. Kordos, D. Dąbrowski

References

1. Blachnik, M., Duch, W.: Lvq algorithm with instance weighting for generation of
prototype-based rules. Neural Networks 24(8), 824–830 (2011)

2. Blachnik, M., Kordos, M., Duch, W.: Extraction of prototype-based threshold rules
using neural training procedure. In: ICANN 2012, Lausanne, Switzerland, 2012. pp.
255–262. Springer (2012)

3. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: Taxonomy and empirical study. IEEE transactions on pattern
analysis and machine intelligence 34(3), 417–435 (2012)

4. Kolodner, J.: Case-based reasoning. Morgan Kaufmann (2014)
5. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: A python toolbox to

tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research 18, 1–5 (2017), http://jmlr.org/papers/v18/16-365.html

6. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Advances in neural information processing systems 30 (2017)

7. M. Chakraborty, S. K. Biswas, B.P.: Rule extraction from neural network trained
using deep belief network and back propagation. Knowledge and Information Sys-
tems 62, 3753–3781 (2020). https://doi.org/doi:10.1007/s10115-020-01473-0

8. Ma, C., Zhao, B., Chen, C., Rudin, C.: This looks like those: Illuminating pro-
totypical concepts using multiple visualizations. Advances in Neural Information
Processing Systems 36 (2024)

9. Pedregosa, F.e.a.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

10. Ribeiro, Marco Tulio, S.S.: Why should i trust you?: Explaining the predictions of
any classifier. In: 22nd ACM SIGKDD (2016)

11. Sara El Mekkaoui, Loubna Benabbou, A.B.: Rule-extraction meth-
ods from feedforward neural networks: A systematic literature review.
https://arxiv.org/html/2312.12878v1 (2023)

12. Saranya A., S.R.: A systematic review of explainable artificial intelligence mod-
els and applications: Recent developments and future trends. Decision Analytics
Journal 7, 100230 (2023)

13. Shankaranarayana, S.M., Runje, D.: Alime: Autoencoder based approach for local
interpretability. In: IDEAL. pp. 454–463. Springer (2019)

14. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International conference on machine learn-
ing. pp. 3145–3153. PMLR (2017)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_11

http://jmlr.org/papers/v18/16-365.html
https://doi.org/doi:10.1007/s10115-020-01473-0
https://doi.org/doi:10.1007/s10115-020-01473-0
https://dx.doi.org/10.1007/978-3-031-97635-3_11
https://dx.doi.org/10.1007/978-3-031-97635-3_11

