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Abstract. Accurate wildfire prediction requires updated, high-resolution
fuel maps that account for seasonal vegetation variations. The flamma-
bility of crops varies by season, affecting the behavior of wildfires. This
study combines remote sensing indices and machine learning to dynam-
ically update fuel models in cropland zones. Using Sentinel-2 data, the
status of the cropland is classified as ”planted” or ”unplanted,” achiev-
ing 80% accuracy. Applied to a 2019 wildfire in Catalonia (Spain), the
updated fuel map closely matched the observed fire spread. The method-
ology outperforms traditional approaches and is efficient, allowing for
real-time updates based on seasonal changes.

Keywords: Remote Sensing indices · Machine Learning · Seasonal fuel
map · Wildfire · Cropland.

1 Introduction

To accurately forecast the behavior of a wildfire, having access to updated high-
resolution fuel maps is crucial. However, obtaining maps that correspond to the
specific year of a fire and accurately reflect the seasonal fuel characteristics of the
affected area is often challenging. Fuel maps classify vegetation characteristics
into fuel models, which are required for forest fire spread models. One of the
most commonly used sets is the Scott and Burgan one [13] which includes the
NB3 class for agricultural fields, treating cultivated land as a firebreak. How-
ever, depending on the season, some croplands can become highly flammable,
contributing to fire spread. Current fuel maps lack this seasonal variability, so a
tool to assess and update cropland flammability would enhance wildfire simula-
tion accuracy. The availability of long-term open data, particularly from remote
sensing instruments like Sentinel-2, has facilitated the creation of machine learn-
ing models to address information gaps in complex systems. Sentinel-2 provides
periodic, high-resolution (10m pixel) data, which is valuable for agricultural
monitoring. This data provides new opportunities to collect more precise infor-
mation about croplands to improve fuel map descriptions. In fact, this capability
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has already been used to monitor various crops, such as maize crop growth and
rice field detection [2], and it has also been used to determine the extent of crop-
lands [12]. This study proposes using remote sensing indices to train a machine
learning model to determine if cropland is planted or unplanted. With remote
sensing data updated every five days, this methodology allows fuel maps to be
updated according to the current season.

2 Materials
The study conducted in this work focuses on the agricultural areas of Catalonia
(Spain), using data from 2021, 2022, and 2023. Remote sensing indices from this
period have been used as features to train an AI model, along with cropland
data, such as the type of crop and the months they are planted or unplanted, to
create the ground truth. The training data can be divided into two categories:
Crop Yield Data and Remote Sensing Indices Data.

2.1 Crop Yield Data

Catalonia’s DACC [5] collects crop data in the Unique Agrarian Declaration
(DUN)[5]. Each year, all crop fields declared in DUN are available in a shapefile,
where each crop field is represented as a polygon. In this study, only a subset of
fields (polygons) was selected based on specific criteria. The selected fields met
the following conditions: the same crop cultivated from 2021 to 2023, a minimum
area of 100m2, a single crop per year, and no interruptions like houses or struc-
tures. Polygons with invalid geometries, such as self-intersections, degenerated
shapes, or other topological issues, were discarded. The selected crops included
soft wheat, barley, oats, and corn.

2.2 Remote Sensing Indices Data

After obtaining crop yield data, remote sensing indices were processed using
multispectral Sentinel-2 data (Level-2A product). The data was downloaded
from 2021 to 2023 through the openEO API [1]. The vegetation indices—NDVI
[3], MSAVI [3], GNDVI [6], and EVI [3]—were computed using bands 2, 3, 4,
and 8 at a spatial resolution of 10 meters. These indices were selected for their
widespread use in vegetation monitoring, and among them, preference was given
to those without free parameters. To ensure Sentinel-2 data quality, the Scene
Classification Layer (SCL) [11] was used to identify and exclude clouds and
cloud shadows that make some pixels unreliable for analysis. These pixels were
assigned NaN values, excluding them from the analysis.

3 Methodology

This section describes the proposed methodology to determine whether a crop-
land should be considered planted or not, consisting of the following 4 steps:
Image Segmentation and Preprocessing (ISP), Data Cleaning (DC),Model Devel-
opment and Performance Evaluation (MDPE) and Fuel Map Updating (FMU).
Subsequently, a more detailed explanation of these steps is included.
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3.1 Image Segmentation and Preprocessing (ISP)

After downloading all bands for the whole Catalonia area and for all available
days in 2021, 2022, and 2023, the remote sensing indices were computed. For each
cropland field, only the pixels from the remote sensing index that were entirely
contained within the field boundaries were identified. A margin was intentionally
left when selecting the pixels, as cropland fields are often not fully planted up
to their borders. Figure 1 exemplifies this process using three pictures. The left
picture shows the borderline of a given cropland with a white line. In the central
image, the pixels used as a representation of the cropland are white colored and,
finally, the right image illustrates the value of a certain remote sensing index for
the representative pixels of the study field. For each remote sensing index, the
median of the selected pixels was computed to reduce the influence of outliers
and better represent the crop field, excluding anomalies caused by equipment,
objects, or soil variability. Crop fields that contained only a single pixel (while
accounting for edge constraints) were accepted as valid. However, fields with no
interior pixels were excluded from the analysis.

Fig. 1: Steps for selecting representative pixels for a given cropland.

After evaluating the median of remote sensing indices for each cropland and
day over the three years, a database was created with the following fields:

– Crop ID: This value corresponds to a unique identifier for each cropland.
– NDVI, EVI, GNDVI, MSAVI: Indices with a theoretical range between

-1 and 1. In practice, bright (e.g., clouds) and dark areas (e.g., shadows) may
produce anomalous values, which are treated as noise and discarded.

– Crop: This field describes the type of crop planted in the corresponding
cropland. The possible values are Soft wheat, Barley, Oats and Corn.

– Date: A day corresponding to the date on which the data was recorded.
– Planting status: Will be 1 if the cropland is planted or 0 if it is unplanted.

To determine the planting status, fields have been selected where the typical
crop cycles are known (see Table 1). For these fields, the months in which they
are certainly planted and the months in which they are without crops (as no
second crop is grown) are known. Transitional months (those involving planting,
growth onset, or harvesting) were intentionally excluded from the table, as crop
presence during these periods can be variable [8].
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Table 1: Planted and Unplanted months for selected crops in Catalonia [8].
Crop Planted Months Unplanted Months

Soft wheat 1, 2, 3, 4, 5 8, 9, 10
Barley 1, 2, 3, 4, 5 7, 8, 9, 10
Oats 1, 2, 3, 4, 5 8, 9, 10
Corn 6, 7, 8 11, 12, 1, 2, 3

3.2 Data Cleaning (DC)

Despite removing clouds and shadows from the SCL layer, some outliers may still
exist. To address this, we consider that the selected crops follow planting cycles
characterized by regular seasonal patterns. This seasonal signal creates wave-like
time series data, which can be approximated by a sinusoidal curve. Therefore,
the Fast Fourier Transform is used to clean the data effectively [9]. In remote
sensing, such as with vegetation indices, it helps separate low-frequency patterns
(e.g., seasonal vegetation growth) from high-frequency noise (e.g., interference
from undetected clouds). A high-frequency filtering process is applied to detect
and remove outliers for each crop in the dataset, filtering out high frequencies
while keeping lower ones. An inverse Fourier Transform then reconstructs the
”cleaned” data, removing unwanted fluctuations. By comparing the original and
smoothed data, outliers are identified and removed.

3.3 Model Development and Performance Evaluation (MDPE)

The present study uses AI to classify cropland data from 2021 to 2023 based on
planting status and four vegetation indices as predictive features. All variables
were standardized to have a mean of zero and a standard deviation of one,
ensuring a uniform contribution to the model. The dataset was split into 80% for
training and 20% for testing. Multiple classification algorithms were evaluated,
including Logistic Regression, Decision Trees, Random Forest, XGBoost, and
CatBoost, with CatBoostClassifier chosen for its superior accuracy. The model’s
performance was evaluated using metrics such as Accuracy, Precision, Recall,
and F1-Score [10]. The obtained results are shown in Table 2.

Table 2: CatBoost performance metrics.
Target Precision Recall F1-Score

Unplanted 0.79 0.82 0.81

Planted 0.82 0.79 0.80

Weighted Avg 0.81 0.80 0.80

Accuracy 0.80

3.4 Fuel Map Updating (FMU)

When a forest fire occurs, the pre-trained CatBoost model updates the fuel map
to reflect the current cropland status. This process begins by identifying the area
of interest, downloading the necessary satellite bands, and computing remote
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Fig. 2: Fuel map update process using the AI model to modify croplands status.

sensing indices. The analysis focuses on up to 5 days of pre-fire data, assuming
optimal weather conditions. The median values of remote sensing indices are
calculated for each agricultural field, following the procedure described in the
ISP step. These median values will be used as input for the AI, which will
classify the fields as either planted or unplanted. Unplanted fields are assigned
the Burgan NB3 fuel model [13], acting as fire barriers, while planted fields are
assigned the GR4 model[13], which represents 2-foot-deep vegetation in arid to
semi-arid climates such as Catalonia. The pixels of the polygons that represent
planted crop fields will be assigned this fuel model, which best represents the
behavior of a forest fire in agricultural areas, overwriting the original fuel map
data. It is important to note that in the pixels being overwritten, the original
fuel map might have classified the area as NB3 (croplands, not-burnable) if it
was correctly identified as cropland. It is also possible that the fuel map does
not recognize the area as cropland, especially if it is an older fuel map where the
area might have been classified as something else, like grass or shrub. Regardless
of the previous classification, the new information will overwrite the data of the
old pixel. This fuel map update scheme is illustrated in Figure 2.

4 Experimental Study and Results

4.1 Case Study

To evaluate the effect of updating cropland fuel data using an AI model, a real
wildfire in Nalec, Catalonia (Spain), from June 2019, was selected as a case study.
This wildfire was chosen because 60 % of the burned area was agricultural fields.
Figure 3a shows the ignition point of the fire with a triangle (June 24 at 17:56)
and the orange shape indicates the final burned area (June 24 at 21:05). To
locate agricultural fields in the area, crops declared in the DUN of 2019 were
used (see Figure 3b). Multispectral data from Sentinel-2 for June 17, 2019 (7
days before the wildfire occurred), was used. Wildfire simulations were conducted
using FARSITE [4], with a LCP file from PREVINCAT [7]. While results depend
on them, the methodology remains independent, ensuring broad applicability.
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(a) Nalec fire. (b) Croplands in the fire area.

Fig. 3: Ignition point and final burned area 3a and croplands in the region 3b.

4.2 Experimental Results

This section presents the simulation forecasts for the study case when updating
cropland status using the proposed AI model. To assess the impact of classifying
cropland as planted or unplanted, two extreme scenarios were analyzed: all crop-
lands planted (scenario P) and all unplanted (scenario UP). The scenario using
the AI-updated fuel map is referred to as scenario AI. In all three simulations,
only the fuel map was modified; all other input data remained unchanged. The
simulation covered a total fire duration of 3 hours and 9 minutes. The orange
area in all images indicates the real final fire perimeter.

(a) Scenario UP. (b) Scenario P. (c) Scenario AI.

Fig. 4: Wildfire simulation using scenarios: UP (a), P (b) and AI (c).

In Figure 4a (Scenario UP), the fire spread is significantly underestimated
because unplanted croplands act as barriers, preventing the fire from advancing.
This results in the simulated fire being confined to a much smaller area compared
to the real perimeter (blue shape in Figure 4a). In contrast, Figure 4b (Scenario
P) removes this barrier effect, leading to a substantial overestimation of the
fire spread. The simulated area is much larger than the actual fire perimeter,
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extending beyond the available landscape data (LCP). Finally, Figure 4c (Sce-
nario AI ) shows the final burned area using the seasonal fuel map from the AI
model. This simulation is the most accurate, as it incorporates detailed cropland
information, distinguishing between planted and unplanted areas at the time of
the fire.

Fig. 5: Croplands in the fire area classified as planted or unplanted by the AI.

Figure 5 presents a zoomed-in view of the fire area and includes information
about the croplands classified by the AI model as planted or unplanted. This
is the classification used to update the fuel map for Scenario AI. The white
areas in the figure are non-cropland areas, therefore, the AI model does not
update the fuel information associated with them. It is worth noting that the
”hole” in the real burned area corresponds to areas identified by the AI model
as unplanted cropland, which aligns with the fire behavior that avoids burning
this zone. Additionally, the AI model correctly classifies the croplands to the
”head of the fire” (north) as unplanted, consistent with the firefighter report
describing these areas as non-burnable. Furthermore, most of the croplands that
fall within the real final perimeter are accurately marked by the AI model as
planted, demonstrating its ability to capture the conditions that facilitated the
spread of the fire.

5 Conclusions

This study emphasizes the importance of integrating remote sensing data into
fire behavior modeling to improve wildfire spread predictions. The results demon-
strated the impact of cropland status (planted vs. unplanted) on fire dynamics.
For that reason, an AI system has been proposed to train a CatBoost model,
which uses several remote sensing indices as training features along with seasonal
information about crop planting status extracted from the DUN database. The
AI model was tested on the Nalec fire, being capable of identifying unplanted
crops, aligning with firefighter reports, and confirming the model’s potential
as a reliable tool for managing wildfires. This methodology is fast and easy to
implement, making it suitable for near-real-time applications.
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