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Abstract. In this paper we study centrality resilience, that is, how well close-
ness and betweenness centralities are maintained under attacks. We propose effi-
cient attack models to disrupt the rank of the top k centrality vertices. To develop
our attack models, we extend the concept of rich clubs of influential vertices to
the more general framework of scattered rich clubs—dense subgraphs of high-
centrality vertices that are spread across the network. To improve computational
efficiency, we use snowball sampling to identify these important substructures.
Our results over real-world networks demonstrate that our algorithm can identify
the single or scattered rich clubs efficiently and is more effective in disrupting the
centrality rankings of the network, compared to other baseline methods.
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1 Introduction

Networks (or graphs) are mathematical models of complex systems of interacting en-
tities that occur across diverse disciplines including cyber-security, bioinformatics, and
mobile networks. The entities in the complex systems are represented as vertices, and
their dyadic interactions as edges. Resiliency to attacks is an important property of
networks. Most research focus on connectivity, that is how attacks can disconnect the
network [4]. In this paper, we develop attack models to study network resilience with
respect to path-based centralities. We term this type of resilience as centrality resilience.
as opposed to the connectivity resilience of the earlier studies.
Motivation: Centrality resilience is a powerful tool for insidiously disrupting the func-
tioning of a network without a drastic change to its structure.When one part of a net-
work cannot communicate with the rest of the system, it is easy to infer that the cause is
due to disconnectivity. Attack on centrality may not disconnect the network, but result
in longer distances and more time to transmission when traversing the network. That
the increased length of the distances is due to the change in the ranking of the high
centrality vertices may not be immediately apparent until the centralities of the system
are re-computed. Such techniques can be applied for both malicious (stealth attacks in
cybersecurity, where the location of attack cannot be immediately known) and benign
(reducing the load on bottlenecks, under limited resources) attacks.

Our goal is to develop edges attack models that will disrupt the centrality distribu-
tion of the network, i.e. high centrality nodes will no longer be of high centrality.
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(a) Single rich club at core (b) Rich clubs scattered across network

Fig. 1: Rich clubs in complex networks. (a) Network with a single rich club. (b) Network
with rich clubs scattered across the network.

Key steps and contributions: Our steps to achieve this objective are as follows.
Step 1: Identify the structural properties that affect centrality resilience. (Section 2).

We identify substructures that affect centrality resilience based on the observation
of [13] that path-based centralities form dense clusters or “rich clubs”. A rich club,
is an assortative subgraph, where all the vertices have high value of a vertex-based
property p, in this case, betweenness or closeness centrality. Breaking these rich clubs
will affect the ranking of the high centrality vertices. We extend the concept of a single
rich club [13] to scattered rich clubs, i.e. clusters that contain high centrality vertices
that may be spread across the network. Fig.1 compares the structure of networks with a
single (a) and multiple scattered (b) rich club(s). Here, "high centrality vertices" refers
to the union of the top-k (here set to 20) high betweenness and closeness vertices.
Contribution: We demonstrate that rich clubs of high centrality vertices can be spread
across multiple clusters of a network and develop a metric to measure the degree of
scatteredness based on the distribution of high centrality vertices across the clusters.

Step 2: Develop efficient algorithms to extract scattered rich clubs. (Section 3).

To compute the degree of scatteredness, we need to find the high centrality nodes as

seeds and construct dense clusters around them. This approach is very computationally
intensive. Further, several iterative steps are required to find the appropriate sets of
nodes that form the clusters. We observe due to their high centrality, the vertices can
reach out to many neighbors in a few hops, and thus the rich clubs have expander graph
like properties. We use snowball sampling [11], which exploits the expander property
of graphs, to identify the regions containing high centrality vertices.
Contribution: We develop an efficient algorithm to find scattered rich clubs using snow-
ball sampling. We demonstrate that our sampling method can find most of the high
centrality nodes and with much lower complexity than the naive method of finding high
centrality vertices and then forming clusters.

Step 3: Develop attack models based on scattered rich clubs (Section 4).

Our final step is to develop attack models by removing edges that belong to the
rich clubs. Attacks based on removing the vertices are equivalent to removing multiple
edges. We therefore posit that edge removal is a more fine grained operation where the
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attack is spread strategically across the networks. We use snowball sampling to find the
single/scattered rich clubs, and then select edges to delete from these rich clubs.
Contribution: We develop sample-based attack strategies for disrupting the rank of high
centrality vertices, based on single and scattered rich clubs. We quantify how much the
ranking of the vertices have been perturbed, as per the Jaccard index. Our results show
that our attack models are more effective than other baseline attack methods.

Related Work. Understanding network structure that governs robustness is an impor-
tant research area. Adiga et. al. [2] studied the robustness of the top cores under sam-
pling and in noisy networks and Laishram et. al. [8] developed core based approaches
to increase network resilience. Here, we focus on resilience with respect to centrality.

There have been several papers on attack models that perturb the centrality of top k
high centrality nodes. The attack models proposed in [7] target nodes with high im-
portance and the average time complexity of the three models proposed in the paper is
O(E). A heuristic algorithm in [3] balances the centrality measures by link addition. [5]
proposes an attack model targeting nodes with high eigenvector centrality.

Network Type Nodes | Edges | Avg Clus Co-eff | Max Core
dmela Biological 7393 25569 0.01 11
euroraod Infrastructure 1174 1417 0.016 2
HepPh Citation 34546 | 420877 0.284 30
CondMat Collaboration 23133 | 93439 0.63 25
as20000102 Autonomous System | 6474 12572 0.25 12
caida Autonomous System | 26476 | 53383 0.21 22
HepTh Citation 27770 | 352285 0.312 37
email-univ Communication 1133 5451 0.22 11
AstroPh Collaboration 18772 | 198050 0.63 56
grid-fission-yeast | Biological 2026 12637 0.221 34

Table 1: Test suite of networks, along with their properties.
2 SCATTERED RICH CLUBS

We evaluate our approach on ten real-world networks from SNAP(Stanford Large Net-
work Dataset) [9] and Network repository [1], as given in Table 1. We show that high
centrality vertices can be distributed across the network cores and propose a new metric,
the degree of scatteredness, to quantify this distribution.

Distribution of rich clubs of high centrality vertices. In several networks, the high
betweeness and closeness centrality vertices are located in the innermost cores [12,13].
Since the innermost cores form a dense subgraph, therefore this becomes a rich club.
However, in many networks the high centrality vertices can be distributed across cores.
This phenomenon requires a more general definition, that of scattered rich clubs.

Scattered rich club: Given a graph G (V, E)), a vertex property f, and a threshold
value, p, scattered rich clubs are a set of disjoint subgraphs, {51, Sa, ..., Sy}, where
Si (Vi, E;),suchthat ViNVoN...NV, = ¢andVo € (Vi UVLU...UV,), f(v) > p.
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Fig.2: Step-by-step illustration of the clustering algorithm.

The implicit expectation of a single subgraph in rich clubs is relaxed in scattered
rich clubs. This generalizes the definition of rich clubs, because every network will
have scattered rich clubs, even if the number of vertices in the rich clubs is one. Each
scattered rich club includes at least one high-centrality node and may be augmented
with a few neighboring nodes to form a dense, non-trivial cluster.

Identifying clusters forming the scattered rich clubs. The work of Estrada et. al. [6]
shows that real-world networks fall in two categories. Either they have a dense core
with sparsely connected periphery (single rich club) or are composed of subgraphs
which are individually densely connected but have sparse inter-connection (scattered
rich club).We identify scattered rich clubs using these steps, as shown in Figure 2.

First, we create the union of the top k (k=20) high betweenness (Np;.) and close-
ness (Np..) centrality vertices of the network to create a unified set of high centrality
vertices Npe = Npce U Nppe. Second, we form a cluster comprising of each node in
Np. and its neighbors. The total number of clusters formed be equal to the number of
nodes (| Np|). Third, we merge overlapping clusters. For each cluster pair C;, C;, we
compute the Jaccard Index as the ratio of their intersecting nodes to their total nodes. If
it exceeds a given threshold (set to 0.1) we merge them as C; = C; UC'; and repeat until
no further merges are possible between any cluster pairs. This ensures that the maxi-
mum possible number of high-centrality nodes are put together in a cluster. At the end
of these steps, we will have the disjoint clusters containing the high centrality vertices
and their neighbors. If the network has a single rich club, then there will be one cluster,
otherwise, there will be multiple clusters.

Quantifying the degree of scatteredness. In scattered rich clubs, the number of
clusters, and the number of high centrality nodes in each cluster vary. We quantify this
distribution using a new metric, the degree of scatteredness, as follows;
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Let H be the total number of high centrality nodes and K the total number of
clusters. Let H; be the number of high centrality nodes in cluster C';, ordered such that
H; > Hj for i < j. For each cluster C,, the ratio of the number of high-centrality
vertices in the cluster to the number of clusters so far seen, R, = % The degree of
scatteredness is then the mean of these ratios over the clusters; % (Zlel Ri)

Using this formula, a single cluster will give the degree of scatterdness 1. When
every cluster has one vertex, the value will be % (Zle %), which will tend to zero as

K becomes large. Table 2 shows the degree of scatteredness of our test networks. The
more the high centrality nodes scatter into clusters, the value of scatteredness is lower.

Degree of scatteredness of Networks and high-centrality nodes prediction
Dataset High- Number of | Distribution of High  Degree of Precision Recall
centrality Clusters Centrality Nodes  Scatteredness|
nodes

dmela 25 25 25(1) 0.152 0.07 0.88
euroroad 33 31 29(1), 2(2) 0.167 0.09 0.55
HepPh 28 21 17(1), 2(2), 1(4), 1(3) 0.293 0.04 0.96
CondMat 28 21 19(1), 1(2), 1(7) 0.362 0.14 0.79
as20000102 24 15 12(1), 2(5), 1(2) 0.402 0.70 0.79
caida 25 12 9(1), 1(11), 1(3), 1(2) 0.577 0.39 0.96
HepTh 26 10 6(1), 2(3), 1(2), 1(12) 0.609 0.15 0.77
email-univ 26 10 7(1), 2(2), 1(15) 0.683 0.15 0.85
AstroPh 31 9 6(1),2(2), 1(21) 0.763 0.15 0.74
grid-fission-yeast 33 6 4(1), 1(26), 1(3) 0.862 0.30 0.45

Table 2: Degree of scatteredness and high-centrality nodes prediction via sampling.
Multiplicity of clusters is shown as, K(M) = K clusters with M high-centrality nodes.

3 Identifying Scattered Rich Clubs Using Snowball Algorithm

While the steps in Section 2 can locate single and scattered rich clubs, in practice, find-
ing high centrality vertices for large networks is computationally intensive. Moreover,
in real-world applications, the entire network may not be available for analysis.

To address these challenges, we propose identifying the rich clubs by sampling the
network, using snowball sampling. Snowball sampling was presented in [10], where
the authors conjectured that samples with higher expansion factors are more likely to
be representative of the community structure of the network. We posit that the rich clubs
are good expanders, since the high centrality vertices embedded in them can, in a few
hops, reach a wide set of vertices. Therefore, we modify the snowball sampling to find
the high centrality vertices. The unique features of our algorithm are as follows;

We set the threshold, k, as 10% of the nodes in the network and used high-degree,
high-clustering coefficient nodes as seed nodes. After each run of the sampling we
obtain a sampled subgraph. We analyze the core periphery structure of this subgraph
and designate the nodes in the innermost and second innermost core as high centrality
nodes. We continue obtaining new snowball samples, until the set of high centrality
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Fig. 3: Distribution of high-centrality nodes across network cores. Top: original net-
works. Bottom: networks sampled using the snowball in a single run with 10% of nodes.
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nodes does not change, or a maximum threshold of runs (here set to 40) has been exe-
cuted. At the end of this process, the sampled subgraphs are the predicted rich clubs and
the nodes in the inner and second inner cores are the predicted high centrality vertices.
The algorithm’s time complexity is dominated by the size of the subgraph .S. Each
edge in S is accessed once during snowball sampling and again during core-periphery
computation. The complexity per sample is O(T - E(S)); T is the maximum iterations.
Results and Discussion. Table 2 shows the effectiveness of the sampling algorithm in
finding high centrality nodes using high degree and high clustering coefficient nodes
as seed. Our ground truth is the union of the set of top 20 high betweenness centrality
vertices and the top 20 high closeness centrality vertices. The precision values of the
predicted set are generally low. This is because the total predicted set size can be higher
than the ground truth. The recall, whether all the nodes in the ground truth were obtained
is high, more that 0.70, for most of the networks with single and scattered rich clubs.

4 Attack Models for Disrupting Centrality

We develop the attack model, using the subgraphs obtained through snowball sam-
pling, to remove edges such that the ranking of the high-centrality nodes is disrupted.
As shown in Figure 3 graphs sampled using one instance of snowball sampling have
most high-centrality nodes concentrated in the inner two cores. Further, the distribution
of high centrality nodes of the sampled graph roughly mimic their distribution in the
original graph. Thus, we deem a node to have a high core number if it is in the inner or
second innermost core of the sampled subgraph, and select an edge for deletion if both
its endpoints have a high core number in the sampled graph.

We test the centrality resilience by removing 2%, 4%, 6%, and 8% of the total edges.
If we reach a limit of edges to choose, we relax the condition and select an edge if at
least one of its endpoints has a high core number in the sampled graph. We stop the
process if the required number of edges are removed or no more edges left for removal.

After edge removal, we identify the top 20 high betweenness and closeness central-
ity vertices of the perturbed network and compare these high centrality vertices with
the ones in the original network using the Jaccard index. The closer the value is to 0,
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the more perturbed the network. The time complexity of the attack algorithm is E(.S),
dominated by the cost of a single snowball sampling run that produces subgraph S.

Closeness Centrality Disruption on Rich Club Datasets
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Fig. 4: Closeness centrality disruption under shell-max (red), betweenness (green), rich
club (blue) attacks. Top: scatteredness > .5. Bottom: scatteredness < .5.
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Fig. 5: Betweenness centrality disruption under shell-max, betweenness, rich club at-
tacks. Top: scatteredness > .5. Bottom: scatteredness < .5.

Results. We compare our scattered rich club attack method (i) Shell-Max, [14] that
removes edges with high k-core value ; (ii) Betweenness centrality, where edges are
removed according to the order of high edge betweenness centrality and use Jaccard
Index to measure the change in top 20 high centrality vertices. The lower the Jaccard
index the higher the disruption. Figures 4 and 5 show that in most of the cases our
method outperforms the baseline methods. Our attack model, in general, creates higher
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disruption than Shell-Max, and is comparable to betweenness centrality based attacks.
However, the time complexity of computing edge betweenness centrality is O(V E),
which is an order of magnitude higher than the scatterred rich club based method.

5

Conclusion

We demonstrate that rich club of central nodes can be scattered across the network
as opposed to being concentrated at the core. We discuss the implications of scattered
rich clubs in terms of network centrality resilience and develop a predictive approach
for discovering the scattered rich clubs using snowball sampling. Scattered rich club
provide more detailed insights into how change occurs in complex networks. In future,
we will study how scattered rich clubs affect other properties such as communities, and
whether they can be used to predict high centrality nodes in dynamic networks.
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