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Abstract. We present a novel method for predicting multiple reaction
monitoring (MRM) transitions for peptides in targeted proteomics. Our
approach employs a hash-based representation inspired by convolutional
neural networks, efficiently encoding peptide fragments as sparse count
vectors that capture local sequence context. Using gradient-boosted de-
cision trees, our method achieves mean Hits@5 scores of 3.4318 (hash-
based) and 3.5405 (hybrid model with target frequency), significantly
outperforming baselines. Transpiling trained models into Zig enables ex-
ceptional computational efficiency, with low memory usage (1180 kB)
and a throughput of 388-451 peptides/second even on mobile devices,
enabling lightweight, high-speed processing for scalable peptide MRM
transition prediction in high-throughput proteomics workflows.
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1 Introduction

Multiple Reaction Monitoring (MRM) is a mass spectrometry technique enabling
precise peptide quantification in applications ranging from biomarker discov-
ery to pharmaceutical development. Mass spectrometry identifies compounds
by measuring the mass-to-charge ratio (m/z) of ions, with MRM specifically
employing a three-step process: (1) filtering ions with the desired m/z, (2) frag-
menting these filtered ions via collision with inert gas, and (3) filtering fragments
by m/z for highly-specific detection. Determining appropriate m/z values for the
final filtering step requires analyzing pure samples with the second filter deac-
tivated—a time-intensive and resource-demanding process [9], underscoring the
value of computational prediction methods.

Peptides, amino acid chains linked by peptide bonds (typically <50 residues),
fragment into characteristic b ions (N-terminal) and y ions (C-terminal) during
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mass spectrometry. Amino acids contain an amino group, a carboxyl group,
hydrogen, and a variable side chain determining their properties, all connected
to a central alpha carbon atom. The 20 standard amino acids use single-letter
codes (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y), with
the fragment notation indicating the amino acid count (e.g., in CYIQNCPLG,
b3=CYI and y2=LG), as shown in Figure 1.

Existing approaches have significant limitations: small-molecule models [1] are
unsuitable due to structural differences; simple representations such as amino
acid composition [2] miss positional information despite wide use [3,4]; and neural
networks like ESM [8] capture sequence features effectively but impose excessive
computational demands.

Our approach addresses these challenges by replacing CNN [6] convolutions with
hashing to efficiently encode peptide fragments as sparse vectors, capturing lo-
cal sequence context with minimal overhead. Trained with LightGBM [5] and
transpiled to Zig, our method achieves both high accuracy and computational
efficiency for real-world proteomics applications.
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Fig. 1. Peptide fragmentation notation for a peptide with four amino acids.

2 Methodology

2.1 Data

The dataset used in this study was obtained from Multiple Reaction Monitor-
ing Assays for Large-Scale Quantitation [7] and comprises 2,965 unique peptide
sequences (ranging from 6-25 amino acids, median 11) with experimentally opti-
mized MRM transitions. The majority of peptides (2,922) have five transitions,
while the remainder have between 3-9, totaling 14,881 transitions represented
as b/y ions with specific charge states (e.g., b9++). Charge distributions are
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predominantly +1 (11,592), +2 (3,177), and +3 (111). Figure 2 illustrates key
dataset characteristics, highlighting the prevalence of smaller ions.
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Fig. 2. Dataset composition showing sequence length distribution and b/y ion counts.

2.2 Peptide Fragment Representation

Algorithm 1 Peptide fragment sequence representation with neighborhood
hashing
Require: Input sequence s of length n ≥ 3, radius R ≥ 0
1: Initialize empty array H for hashes
2: for j ← 1 to n do
3: v0j ← [0] ∥ description(sj) ▷ Initial encoding
4: h0

j ← hash(v0j ); Append h0
j to H

5: end for
6: for i← 1 to R do
7: hi

1 ← hash([i, hi−1
1 , hi−1

2 ]); Append to H ▷ First AA
8: for j ← 2 to n− 1 do
9: hi

j ← hash([i, hi−1
j−1, h

i−1
j , hi−1

j+1]); Append to H ▷ Middle AAs
10: end for
11: hi

n ← hash([i, hi−1
n−1, h

i−1
n ]); Append to H ▷ Last AA

12: end for
13: return H

Our peptide fragment representation (Algorithm 1) draws inspiration from 1D
CNNs. Each amino acid is mapped to a two-element integer vector encoding: an
ordinal position (e.g., A=1, C=2, Q=3, etc.) and a binary inclusion indicator (1
if part of the fragment, 0 otherwise). For instance, in the b2 fragment of peptide
ACQA, the first amino acid ’A’ encodes as [1,1] (included) whereas the final ’A’
encodes as [1,0] (excluded).
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Instead of standard convolutions, we leverage hashing to capture neighborhood
context, aggregating local information through a hash function that processes
neighboring amino acids. For a vector [c1, c2, . . . , cn], we compute its hash as:

Xi+1 = (a ·Xi + ci) mod m, for i ∈ [1, n− 1]

with parameters m = 232, X1 = 1013904223, and a = 1664525.

Hashes are computed iteratively for radius R, transforming the resulting list H
into a sparse count vector that comprehensively represents the fragment. Finally,
charge states are incorporated as an additional integer feature.

2.3 Model Training

We employ Gradient Boosting Decision Trees via LightGBM, selected for their
numerous advantages with high-dimensional sparse data, invariance to mono-
tonic transformations, robustness to correlated features, and straightforward
inference paths. Models are trained with default hyperparameters (100 trees,
maximum 31 leaves) using LambdaMART with NDCG objective and a radius
parameter of R = 2.

To enhance computational efficiency, we preprocess the sparse matrix by elimi-
nating constant columns, reducing the feature count based on the selected R. For
the simplest case where R = 0, only 41 features remain: one for the charge state
and 40 for the amino acid presence/absence patterns. This dimensional reduc-
tion necessitates consistent feature selection between the training and inference
phases.

2.4 Model Evaluation and Inference

We assess performance through 5-fold cross-validation on the dataset (593 pep-
tides per fold), ranking candidate transitions for held-out peptides. Performance
is quantified using the Hits@5 metric, which counts correct transitions appearing
in the top five predictions.

For efficient inference, we transpile LightGBM’s model output into optimized Zig
functions that take hashmap input (column indices with corresponding counts)
and produce prediction scores. This approach creates compact standalone bina-
ries with Zig’s advanced compiler optimizations, eliminating LightGBM depen-
dencies while ensuring cross-platform compatibility and processing efficiency.
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3 Results and Discussion

3.1 Baseline Methods

For a random baseline model, we compute the exact Hits@5 distribution from
empirical data rather than relying on simulations. For a peptide of length n,
total number of possible transitions is 6(n−1) (derived from n−1 possible b/y-
ions and 3 charge states). When randomly sampling 5 transitions, the number
of correct predictions follows a hypergeometric distribution with the probability
mass function:

P (X = k) =

(
T
k

)(
6(n−1)−T

5−k

)(
6(n−1)

5

) ,

where T represents experimentally identified transitions (typically 5). Averaging
probabilities across all peptides yields a probability model with an expected
Hits@5 value of 0.3396 for the random model.

A more effective baseline is the target model, which ranks transitions by their
frequency in the dataset, always predicting [y6+, y5+, b2+, y7+, y4+] in the
top 5. This straightforward approach achieves an average Hits@5 score of 2.2405.

3.2 Model Performance

We evaluated random, target, hash-based, and hash+target models using cross-
validation. The hybrid model integrates target encoding with convolutional hash-
ing, incorporating ion frequency within training folds to mitigate overfitting. This
is implemented as an additional integer feature (e.g., for ion y+8 , the feature rep-
resents how frequently y+8 appears among the top-5 fragment ions in the training
set). Figure 3 illustrates performance distributions via Hits@5.

The results demonstrate marked improvement from the baseline models to hash-
based models. The hash-based model achieves a mean Hits@5 of 3.4318 compared
with 2.2405 for the target model (representing a 58% improvement, p < 10−5, as-
sessed with a one-sided paired permutation test). The hash+target model further
enhances the performance to 3.5405 (p = 0.00381).

While all the models achieve comparable rates of at least one correct prediction,
the hash-based approaches demonstrate substantially higher frequencies of mul-
tiple correct predictions, with the hybrid model producing 19.28× more perfect
predictions than the target model does. This highlights how our approach ex-
cels particularly when maximizing correctly predicted transitions is critical for
downstream applications.
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Fig. 3. Distribution of Hits@5 scores across evaluated models, showing hash-based
models achieve higher frequencies of multiple correct predictions.

4 Ablation Study and Radius Effects

We conducted a detailed investigation into the impact of the radius parameter
R on model performance, with R = 0 representing the complete removal of
the convolutional effects. Figure 4 reveals substantial performance improvement
when R increases from 0 to 1, with gains plateauing at higher values, suggesting
diminishing returns from incorporating larger neighborhood contexts.
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Fig. 4. Effect of radius R on Hits@5 scores, showing significant improvement from
R = 0 to R = 1 and diminishing returns at higher values.

Table 1 presents computational metrics across different R values (Intel i7-8750H
for training, Android Snapdragon 695 for inference). As R increases, the feature
count grows exponentially (39 to 106,735), with the training time increasing
from 18s to over 14 minutes. Notably, memory usage at inference remains con-
stant (1180 kB) across all configurations, whereas inference throughput decreases
marginally (14% from R = 0 to R = 4), demonstrating excellent scalability.
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Table 1. Training and inference performance for different radius values R.

Inference

R Features Training Time Mem. (kB) Time (s) Peptides/sec

0 39 17.68 s 1180 6.564 ± 0.074 451.71
1 12,750 1:23.89 min 1180 6.789 ± 0.012 436.74
2 50,147 6:45.87 min 1180 6.989 ± 0.016 424.24
3 82,040 11:05.74 min 1180 7.205 ± 0.034 411.52
4 106,735 14:32.50 min 1180 7.632 ± 0.078 388.50

5 Conclusion

We have introduced a novel approach for predicting MRM transitions using a
hash-based representation inspired by convolutional neural networks. By encod-
ing peptide fragments as sparse count vectors with gradient boosting trees, our
method achieves significant improvements over established baselines. The hybrid
model integrating target frequencies with convolutional hashing achieves a mean
Hits@5 of 3.5405, a 58% improvement over the baseline approach.

Our ablation study reveals the importance of the local sequence context, with
peak performance gains occurring between R = 0 and R = 1. This demonstrates
the value of neighborhood information while suggesting diminishing returns from
larger contexts. The approach shows exceptional efficiency through Zig transpi-
lation, maintaining consistent memory usage (1180 kB) across configurations
while processing 388-451 peptides/second on mobile devices.

This combination of accuracy and efficiency makes our method practical for
resource-constrained environments. The compact representation enables training
on large datasets with minimal overhead. Future work could extend this method-
ology to other biomolecule types or incorporate domain knowledge to enhance
prediction accuracy, streamlining integration into proteomics workflows.
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