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Abstract. This paper investigates the problem of Graph Spectral Clus-
tering (GSC) with negative similarities, resulting from document em-
beddings different from the traditional Term Vector Space (like doc2vec,
GloVe, etc.). Solutions for combinatorial Laplacians and normalized
Laplacians are discussed. An experimental investigation shows the ad-
vantages and disadvantages of solutions proposed in the literature and
in this research. The research demonstrates that GloVe embeddings fre-
quently cause failures of normalized Laplacian based GSC due to negative
similarities. Application of methods curing similarity negativity leads to
accuracy improvement for both combinatorial and normalized Laplacian
based GSC. It also leads to applicability for GloVe embeddings of expla-
nation methods developed for Term Vector Space embeddings.
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1 Introduction

Graph Spectral Clustering (GSC) is known as an effective method of clustering
when data are available in the form of a similarity matrix. As the method relies
on Laplacians of the similarity matrix, non-negative similarities are required.
However, there exist multiple applications where non-negativity is not guaran-
teed, which leads to numerous formal and numerical problems, as pointed e.g.
in [4]. Although solutions have been proposed for various domains, they have
not been discussed for text document clustering. In this paper, we attempt to
address them.

Originally, the similarity of text documents was computed as a cosine of
the angle between documents embedded in the Term Vector Space (TVS for
⋆ Supported by Polish Ministry of Science
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short). These similarities were non-negative by definition. However, the emer-
gence of new and more efficient embedding methods for textual documents such
as Word2vec [12], Doc2Vec [7], GloVe [9], BERT [2] based on transformers and
others [8] gave rise to the problem of the emergence of negative similarities. This
fact causes formal, theoretical, and computational problems for GSC, as compu-
tational efficiency and accuracy deteriorate. In addition, normalized Laplacians
may not be computable, and the procedure developed to explain clustering re-
sults, as described in [13] will fail.

In this paper, we address the clustering of tweets. Their sheer volume, noise,
and dynamics impose challenges that hinder the effectiveness of observing clus-
ters with high intra-cluster and low inter-cluster similarity, see e.g. [10].

The paper is organized as follows: Section 2 gives an overview of previous
work on related topics. Section 3 contains our proposed solution to the negative
similarity problem, and Section 4 illustrates the effectiveness of the proposed
method. A summary of the article is given in Section 5. Due to space limitations,
only relevant comments are presented here. The reader will find more details in
the extended version [6].

2 Previous work

Graph Spectral Clustering is a methodology for low-complexity approximation of
graph clustering based on graph cut criteria. The best-known criteria are RCut
(ratio-cut) and NCut (normalized cut) defined as follows:

RCut(Γ ) =

k∑
j=1

cut(Cj , C̄j)

|Cj |
=

k∑
j=1

1

|Cj |
∑
i∈Cj

∑
ℓ/∈Cj

siℓ (1)

NCut(Γ ) =

k∑
j=1

cut(Cj , C̄j)

Vj
=

k∑
j=1

1

Vj

∑
i∈Cj

∑
ℓ/∈Cj

siℓ (2)

Here siℓ stands for the similarity between objects i and ℓ, (usually it is a number
between 0 and 1), Γ is the partition of objects, C̄j denotes the complement of
the cluster Cj , |Cj | stands for the cardinality of Cj , and Vj =

∑
i∈Cj

∑
ℓ siℓ is

the volume of j-th cluster. The elements sij form a similarity matrix S, and by
convention sii = 0 as acyclic graphs are used in GSC.

A combinatorial Laplacian is defined as

L = D − S, (3)

where D is the diagonal matrix with dii =
∑n

ℓ=1 siℓ for each i ∈ [n]. A normalized
Laplacian L of the graph represented by S is defined as

L = D−1/2LD−1/2 = I −D−1/2SD−1/2. (4)

There exist numerous application areas where it is convenient to use negative
similarity measures. They include, but are not limited to, studies based on cor-
relations [3], investigations of electric networks [16], and others. As mentioned
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in the Introduction, such similarity measures constitute various problems both
for the graph cut criteria and the GSC clustering methods if we want to extend
them into such a realm.

To overcome the problems with negative similarities, several proposals were
elaborated. One can eliminate negative similarities setting them to zero1

s
(pZ)
ik =

{
sik if sik > 0
0 otherwise (5)

Other simple possibilities include taking absolute values, or adding a positive
constant to all edge weights. Approaches depend on the application, i.e. why
some weights are negative and what the negativity means.

3 Our approach to technical problems

A deeper discussion of these topics can be found in the extended version [6].

3.1 The problem of combinatorial Laplacians

A simple transformation relies upon adding a positive constant c to all off-
diagonal similarities. New matrix S̃ takes the form S̃ = S + c(J − I), where I is
the identity matrix, J = 11T is the matrix with all elements equal to one, and
1 is the vector with all entries equal to one. Thus the entries of S̃ are

s
(pA)
ik = sik + c (6)

and the degree matrix D̃ induced by S̃ is

D̃ = diag(S̃1) = diag(S1+ c(n− 1)1) = D + c(n− 1)I (7)

where diag(v) is a diagonal matrix with v as its diagonal. Laplacian of S̃ is

L̃ = D̃ − S̃ = L− cJ + cnI (8)

Let (λ, v) be an eigenpair of the Laplacian L. Then

L̃v = Lv − cJv + cmIv = (λ+ cn)v (9)

since Jv = 0. This shows that (λ + cn, v) is an eigenpair of L̃. So, RCut mini-
mizing clustering remains unchanged under such an operation.

Alternatively, we can add a positive constant α to the diagonal elements of
the degree matrix, that is, D̂ = D + αI. Then for any eigenpair of L

(D̂ − S)v = Lv + αv = (λ+ α)v (10)

1 The proposal of signed cuts in [5] ignores in fact negative weights, see [4].
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Although the matrix (D̂−S) does not fulfill the requirements of being a combi-
natorial Laplacian, it still belongs to a large family of generalized graph Lapla-
cians, [1]. Rocha and Trevisan call such matrices perturbed Laplacians and de-
velop their theory in [11].

The similarities s
(pA)
ik will get out of the range [0, 1] for large enough c. To

get them again into this range, we can divide them by c+1, leading to elements
of the matrix S̄ = S+c(J−I)

1+c of the form:

s
(pN)
ik =

sik + c

1 + c
(11)

which will lead to the same eigenvectors of the resulting combinatorial Laplacian
L̄ = D̄ − S̄ with D̄ = diag(S̄1) as for the original L.

Conclusion: The calculation of Laplacians L̃, L̂, L̄ is not necessary, because
the eigenvectors of the original L will not differ. Hence, also the clustering based
on the lowest eigenvectors will yield the same results.

Interestingly, the formula (11) can be assigned a geometric interpretation if
we compute the similarities as cosines between the document embedding vectors
in an N-dimensional space, such as the doc2vec or GloVe space, upon extending
this space with an additional dimension, with a constant coordinate, see [6].

3.2 The problem of normalized Laplacians

Two types of problems with computation of normalized Laplacian L =
D(S)−1/2LD(S)−1/2 may occur. First type of problems is faced, when L con-
tains positive off-diagonal elements while all diagonal elements are positive, so
that L is computable, but some off-line elements remain positive. Curing this
situation is analogous to combinatorial Laplacian and shall not be detailed here.
Second type of problems occurs, as described among others in [4], when some
elements of D are negative. This is a more profound problem than just square
rooting negative numbers, [4]. The NCut criterion refers to the cluster volume
that may turn out to be negative. A cluster with negative volume – that is with
strongly dissimilar documents – has a chance to minimize the NCut criterion.
Instead of clusters with strongly similar documents one gets ones with strongly
dissimilar ones. This issue strongly resembles the problems with kernel k-means
which may not reach the minimum of k-means criterion. Therefore, the NCut
criterion must be addressed at the very beginning.

We will consider several proposals.

– Adding a constant to the diagonal of the matrix D,
– Adding a constant to each element of the similarity matrix S,
– Manipulating similarity computation by taking not the cosine of the angle

between documents, but half of this angle.
– Replacing similarity with the exponent of the negated distance between doc-

uments on a unit sphere.
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Consider adding a positive number to all similarities. The clustering taking
similarities into account, that is RCut, will not change. Adding a sufficiently
large constant will make Normalized Laplacian computable. But will the NCut
change under such an operation? Define

s
(pD)
ik (x) =

sik√
dii + x

√
dkk + x

(12)

s
(pD)
ik (0) is the negated off-diagonal element of normalized Laplacian.

It can be shown that if s
(pD)
ik (0) > s

(pD)
iℓ (0), then s

(pD)
ik (c) > s

(pD)
iℓ (c), for

c > 0 and sik > siℓ. Consider three documents, i, k, ℓ and let

s
(pD)
ik (c) > s

(pD)
iℓ (c) which means

sik√
dkk + c

>
siℓ√
dℓℓ + c

If we are in the realm of non-negative similarities (other cases can be handled
similarly)

s2ik
s2iℓ

>
dkk + c

dℓℓ + c

With an increase of c, the expression on the right-hand side grows/decreases
towards one. Therefore, if originally sik > siℓ, then the expression is true.

This means that adding a constant to the normalized Laplacian diagonal
keeps to a great extent the ordering of similarities, so that the results of clus-
tering may be similar, unless the normalization changes proportions between
similarities in the original Laplacian. In case of some negative dii, adding an
appropriate constant may turn the Laplacian into a computable one, resulting
in clustering similar to the one originally intended.

However, the problem is that this solution tends to be in fact a version of the
newly introduced NRCut [14], and not NCut. So another approach is needed.

Another solution would be adding a constant c to each similarity (s(pA)
ik (c) =

sik + c. Again, no warranty that the ordering of all normalized similarities will
be the same and hence that clustering result is the same.

One solution could be to transform the similarity matrix S into a positive
one S(pQ) as follows:

s
(pQ)
ik = cos

(
π

2

arccos sik
maxi,k∈[n],i̸=k arccos sik

)
(13)

whereby max is computed over all off-diagonal elements of the S matrix. cos is
non-negative in the range [0, π

2 ] while it is negative for greater angles. By dividing
the actual angles between documents by the maximal angle, and multiplying with
π
2 we scale all the angles into the non-negative cosine range. Now, the traditional
normalized Laplacian is applicable. The ranking of similarities of combinatorial
Laplacian is preserved completely, but again no warranty for the normalized
similarities. The above formula can be generalized to:

s
(pC)
ik = cos

(
arccos sik
1 + c

)
(14)
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c = 1 is for sure a reasonable choice, because arccos returns values in the range
[0, π] and dividing this result by 2 scales them into the required range [0, π

2 ].
If the graph has isolated nodes, we already get into trouble with normalized

Laplacian because of division by zero; the same applies to the NCut criterion.
Therefore, a change in understanding NCut is needed in such a way that a cluster
with all nodes isolated has a non-zero volume. So, the similarity needs to be
transformed. As the Euclidean distance between two normalized vectors xi, xj

equals to ∥xi − xj∥2 = 2(1− sij), where sij = cos(xi, xj), our proposal is

s
(pE)
ik = e−(1−sik)/2 (15)

This should be applied to get a new similarity matrix S′ as well as a redefinition
of NCut to NCut(pE) (based on the new similarities). There is no need to worry
about isolated nodes. If we generalize the transformation s

(pE)
ik to

s
(pE)
ik (c) = e−(1−(sik+c))/2 (16)

the normalized Laplacian will remain the same for all values c ≥ 0 because
adding a constant in the exponent is the same as multiplying the similarity with
another constant.

3.3 Negativity versus Explainability

GSC result explanation procedure elaborated in [13] encounters serious prob-
lems as it is based on the products of word embedding vectors and cluster center
vectors which would lead to meaningless negative word importance. The correc-
tion proposed for combinatorial Laplacian based GSC keeps the spirit of [13].
As normalized Laplacian is concerned, we show in [13] that additive corrections
of similarity measure does not disturb the explanation bridge.

4 Experiments

We conducted experiments on the effectiveness of GSC methods to predict
hashtags for a large set of short tweets using different methods to deal with
negative similarities, as mentioned in the formulas (6), (11), (13), (14), (16),
(5) for c = 0, 1, 2, 3. Note that c = 0 means that no correction of negative
similarity was performed. For the modified similarity matrices, both combina-
torial and normalized Laplacians were used in GSC. The computations were
performed for the traditional Term Vector Space (TVS, tf, tfidf) as well as
for the GloVe based embeddings: TweetGlove (trained on Twitter data) and
WikiGlove (trained on Wikipedia Data). The results can be accessed via the
link https://github.com/ipipan-barstar/ICCS25.MfHNSiEGSCoTD.

As expected, the Term Vector Space embeddings have no negative similarity
problems. TweetWiki embedding leads to numerous negative similarity matrix
entries, but no problem with row sums occurs for our samples. The most dif-
ficult problems occur for the WikiGloVe embedding, as there are many more
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negative similarities and there are multiple rows with negative entries in three
of the samples. When the correction of negative similarities is based on zeroing
them, Normalized Laplacian based clustering could be executed. We see that
GloVe based do not have a big advantage over TVS based embeddings. The re-
sults are the worst compared to other methods. When the correction of negative
similarities is based on adding a constant to all off-diagonal similarities, with
or without dividing for normalization, Normalized Laplacian-based clustering
could be executed except for c = 0 in WikiGlove embedding because the diago-
nal of D contained negative entries. GloVe based GSC does not have any TVS
based embeddings. At the same time, adding the constant c = 1 significantly
improves the performance, while higher constants do not contribute much to the
results. When normalizing over the largest angle between document vectors, the
results are worse for TVS embeddings, and slightly worse for GloVe embeddings.
When dividing the angle between document vectors, the results constitute an
improvement when dividing by at least two, but dividing by higher values does
not contribute anything. When replacing primary similarities with their expo-
nential variants, the variants do not differ much, but replacement of negative
similarities with exponential ones helps the GloVe based embeddings, and also
the TVS embeddings benefit from this transformation. The GSC results for com-
binatorial Laplacians are significantly worse, and the effects of transformations
are generally marginal, as expected.

Detailed results for all samples are available at
https://github.com/ipipan-barstar/ICCS25.MfHNSiEGSCoTD.

5 Conclusions

In this paper we discussed the issues in graph spectral clustering of documents
resulting from growing popularity of embeddings different from the traditional
Term Vector Space. The major problem is the negative cosine similarities be-
tween documents under these embeddings. We have studied six different methods
for overcoming negative similarities. Essentially, the combinatorial Laplacian-
based clusterings seem to be unaffected by negative similarities, as demonstrated
by theoretical arguments. In case of normalized Laplacians, the method of setting
negative similarities to zero yields the worst results. The other methods perform
similarly. Interestingly, it turns out that for Term vector Space embeddings there
may be an improvement of performance when the similarity correction is applied.
We were also able to provide a geometric interpretation of one of the studied
methods [6]. Note however other approaches to use similarities, e.g. [15]. This
study was limited to two GloVe type embeddings, based on Wiki training data
and Tweeter training data.
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