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Abstract. Most Multi-Criteria Decision Analysis (MCDA) methods en-
code a decision-maker’s preferences through criterion weights, yet even a
well-weighted model can yield ties or virtually indistinguishable scores.
We propose Frobenius SPOTIS (Fro-SPOTIS), which is a generalization
of the classical SPOTIS method that incorporates ordering information
to resolve such ambiguities. Each alternative’s attribute-based ranking
of criteria is compared with a reference ranking derived from the crite-
ria weights. This comparison is performed by converting both rankings
into pairwise preference-score matrices and computing the Frobenius dis-
tance between them. This distance, modulated by a tolerance parameter
τ ∈ [0, 1], is used to modify to the native SPOTIS score: τ = 0 recov-
ers the original SPOTIS results, while higher values increasingly favor
alternatives whose performance ordering aligns with the reference. A
three-alternative example shows how Fro-SPOTIS untangles an other-
wise unresolved tie, and two sensitivity analysis studies trace how rank-
ings shift with (i) changes in the underlying data and (ii) variations in τ .
The results confirm that Fro-SPOTIS retains the simplicity of SPOTIS
while offering a more flexible and expressive approach to tie-breaking in
MCDA.

Keywords: SPOTIS · Frobenis Distance · MCDA.

1 Introduction

Multi-Criteria Decision Analysis (MCDA) is a subfield of operational research fo-
cused on providing methodologies and algorithms to support decision-makers in
complex decision scenarios involving multiple, often conflicting criteria. MCDA
methods assist in structuring decision problems, incorporating both qualita-
tive and quantitative data, and deriving well-informed, rational choices. Many
MCDA methods rely on subjective expert knowledge to determine the rela-
tive importance of criteria, whereas others employ mathematical formulations
to objectively analyze alternatives and establish rankings or recommendations
[15]. Consequently, these techniques offer a comprehensive framework, balancing
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subjective judgment with rigorous quantitative analysis, thereby enhancing the
reliability and transparency of decision-making processes.

Most MCDA methods incorporate importance weights to capture the knowl-
edge and preferences of the decision maker or expert [19]. These weights reflect
the relative significance of each criterion and play a key role in shaping the
final ranking of alternatives. However, in practice, weighting alone may be in-
sufficient—particularly when it leads to ties or nearly indistinguishable rankings
[17]. To overcome this limitation, some approaches incorporate additional in-
formation that assesses how well alternatives align with the desired order of
performance across criteria [3].

While traditional MCDA techniques effectively encode expert input via crite-
rion weights, they often fall short when it comes to distinguishing between alter-
natives with similar aggregated scores. Moreover, they typically lack the means
to evaluate the degree to which alternatives adhere to the intended prioritiza-
tion of criteria. This limitation highlights the need for more advanced methods
that not only consider the relative importance of criteria but also quantify the
alignment of alternatives with these priorities in a meaningful and discriminative
way.

In this paper, we propose the Frobenius Stable Preference Ordering Toward
Ideal Solution (Fro-SPOTIS) method, a generalization of the classical SPO-
TIS method, which utilizes the Frobenius distance [3] to measure discrepancies
between the desirable ordering of criteria derived from their assigned weights
and their actual performance ordering across alternatives. By introducing this
ordering-based distance measure, criteria that deviate significantly from the pre-
ferred ordering are naturally penalized, resulting in their lower positioning within
the final ranking of alternatives. Consequently, Fro-SPOTIS effectively addresses
and resolves ranking ties and closely positioned alternatives, providing clearer
discrimination among them.

Furthermore, we introduce a tolerance parameter τ ∈ [0, 1], enabling analysts
to regulate the strictness of incorporating ordering discrepancies into the final
assessment. When τ = 0, the method reduces to the original SPOTIS formula-
tion, ignoring ordering information, whereas increasing τ progressively amplifies
the influence of ordering consistency. To illustrate and validate the capabilities
of Fro-SPOTIS, we present an illustrative three-alternative example and per-
form two sensitivity analyses that explore the impact of varying the tolerance
parameter and examine the robustness of rankings under data perturbations.
Our results confirm that Fro-SPOTIS maintains the intuitive simplicity of the
SPOTIS approach while enhancing its flexibility, interpretability, and practical
utility in handling tie-breaking scenarios within multi-criteria decision analysis.

The remainder of the paper is structured as follows. In Section 2, we provide
context for our study, iterating on recent work in the domain. In Section 3 we
describe the algorithms and methods used in the study, the Frobenius distance
algorithm and the SPOTIS method. In Section 3.3, we describe the proposed
Frobenius SPOTIS method. In Section 4, we provide experiments showing the
features and limitations of the proposed method and discuss its possible exten-
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sions. Finally, in Section 5, we conclude our work and provide some ideas for
future research directions.

2 Related Works

To compare different alternatives in the decision-making process, many MCDA
methods rely on distance metrics to assess the proximity of each alternative
to an ideal solution. One of the most commonly used metrics for this purpose
is the Euclidean distance. It plays a central role not only in classical MCDA
approaches such as the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) [1], but also in more advanced modern methods, including
COmbinative Distance-based ASsessment (CODAS) [13] and Preference Rank-
ing On the Basis of Ideal-average Distance (PROBID) [18]. The Euclidean dis-
tance is also employed in the Stable Preference Ordering Towards Ideal Solution
(SPOTIS) method [5] to evaluate the performance of alternatives.

In certain cases, researchers and decision-makers utilize even more sophisti-
cated methodologies based on generalized fuzzy sets, necessitating adaptations
or variations of classical distance metrics tailored specifically to the chosen fuzzy
generalization [14,16]. Such generalizations often involve intuitionistic, hesitant,
neutrosophic, or type-2 fuzzy sets, each of which requires unique adaptations
of standard metrics to appropriately handle increased uncertainty and impreci-
sion. Consequently, this underscores the significance of developing diverse dis-
tance measures, as well as thoroughly investigating their suitability, effectiveness,
and robustness across different MCDA contexts. A comprehensive exploration
and comparative analysis of these adapted metrics can significantly enhance the
accuracy and interpretability of multi-criteria evaluations in complex decision
environments.

The Frobenius distance is a recently introduced metric designed specifically
to measure distances between rankings. It is constructed as a genuine distance
metric, explicitly satisfying Kemeny’s axiomatic principles for ranking compar-
isons [3,10]. Furthermore, similar metrics, notably the Kemeny distance itself,
have found extensive applications beyond MCDA, such as in voting theory, pref-
erence aggregation, and social choice, highlighting their broader relevance and
applicability across various decision-making domains.

Several recent studies have demonstrated the versatility of the Kemeny dis-
tance in various analytical contexts. For instance, in [6], the authors proposed
robust fuzzy clustering methods combining Kemeny distance with medoid-based
clustering algorithms. Their results indicated that the proposed approach ef-
fectively mitigates the impact of noise and outliers in datasets, improving the
robustness of the clustering outcomes. Another noteworthy application of the
Kemeny distance involves constructing median rankings from multiple individ-
ual rankings. This problem was addressed by Emond and Mason [7], who in-
troduced a weighted version of the Kemeny-Snell distance for consensus ranking
problems. Their comparative analysis highlighted the advantages of their method
over Kendall’s Tau measure, demonstrating superior performance in generating
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consensus rankings. Additionally, Kemeny distance has been successfully applied
within Multi-Criteria Decision Analysis, notably in the KEmeny Median Indica-
tor Ranks Accordance (KEMIRA) method, to determine criteria weights when
handling two distinct groups of criteria [12].

Although the Frobenius distance was originally introduced to demonstrate
that metrics other than the Kemeny distance could also satisfy Kemeny’s ax-
iomatic principles, its applicability and properties have been further investigated
in contexts involving consensus among multiple rankings. For instance, Dezert et
al. [4] proposed utilizing both Kemeny and Frobenius distances to find optimal
solutions in compromise ranking problems. However, their analysis revealed that
not all scenarios yielded results aligning intuitively with ‘common sense’ expec-
tations. Additionally, in [2], the authors explored the potential of the Frobenius
distance by proposing a methodology specifically designed to quantify differences
between partial orderings, further expanding its applicability in ranking-related
problems.

This highlights the relevance of both Kemeny and Frobenius distances within
the MCDA domain, underlining the need for continued exploration of their the-
oretical properties, comparative performance, and practical applicability across
diverse decision-making contexts. Further research in this direction may lead
to the development of more robust, interpretable, and context-sensitive MCDA
tools that can better accommodate complex preference structures and ranking-
based evaluations.

3 Methodology

In this section, we briefly introduce the methods used in this study: the Frobenius
distance and the SPOTIS method. The former is used to measure deviations
between performance matrices, while the latter supports ranking alternatives
based on their distance to ideal solutions.

3.1 Frobenius Distance

Consider a set X consisting of n ≥ 2 objects, each ranked by two information
sources. We denote the total preference orderings (TPOs) provided by these
sources as Pref1 and Pref2. For example, consider a set of three objects X =
{x1 = A, x2 = B, x3 = C}. Source 1 might provide the preference Pref1 and
source 2 might provide Pref2, with the following TPOs: Pref1 ≜ A ≻ B ≻ C and
Pref2 ≜ B ≻ C ≻ A.

The Frobenius distance between two TPOs (orderings) of N objects is com-
puted by first constructing an N ×N pairwise Preference-Score Matrix (PSM)
based on the ordering given by each source. By convention, the row index i of
the PSM corresponds to the index of elements xi on the left side of the prefer-
ence ordering xi ≻ xj , and the column index j corresponds to the index of the
element xj on the right side of the preference ordering xi ≻ xj . Thus, we denote
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a pairwise Preference-Score Matrix M(X) = [M(i, j)] where its components
M(i, j) for i, j = 1, 2, . . . , N are defined as

M(i, j) =


1, if xi ≻ xj ,

−1, if xi ≺ xj ,

0, if xi = xj .

(1)

Note, that all diagonal elements M(i, i) (i = 1, 2, . . . , N) of the matrix M
are always zero. Additionally, the PSM is inherently anti-symmetric because
the preference xi ≻ xj implies xj ≺ xi. Therefore, if xi ≻ xj holds, meaning
M(i, j) = 1, then necessarily xj ≻ xi is false, implying xj ≺ xi is true, and thus
M(j, i) = −1, and vice versa. As a result, M(X)T = −M(X), and Tr(M(X)) =
0.

The distance between two TPOs, Pref1 and Pref2, is defined using the Frobe-
nius distance as follows [3]:

dF (M1,M2) = ||M1 −M2||F , (2)

where ||M ||F is the Frobenius norm of a square matrix M = [M(i, j), i, j =
1, . . . , N ], defined by [8,9]

||M ||F =

√√√√ n∑
i=1

n∑
j=1

|M(i, j)|2 =
√

Tr(MTM), (3)

and where MT is the transpose of the matrix M , and Tr(.) is the trace operator
for matrix.

Frobenius distance can be normalized to [0, 1] range by dividing the value
dF (M1,M2) by the maximum distance value dmax

F computed by considering two
TPOs in full contradiction (i.e. a preference and its opposite defined by reversing
the preference order). For instance, if a preference ordering is Pref = A ≻ B ≻
C ≻ D, its opposite is ¬Pref = A ≺ B ≺ C ≺ D = D ≻ C ≻ B ≻ A.

3.2 Stable Preference Ordering Towards Ideal Solution (SPOTIS)

The Stable Preference Ordering Toward Ideal Solution (SPOTIS) method, in-
troduced by [5], is a MCDA technique that employs reference objects to assess
decision alternatives. Unlike other methods that typically derive reference ob-
jects from the decision matrix data, SPOTIS requires the decision-maker to
explicitly define these reference objects by defining criteria bounds.

To apply the SPOTIS method, the decision-maker must first establish the
criteria bounds that will serve as reference objects for evaluating alternatives.
For each criterion Cj (j ∈ {1, 2, . . . , N}), the maximum Smax

j and minimum
Smin
j bounds must be specified. Subsequently, the Ideal Solution Point (ISP)

S∗ = {S∗
1 , . . . , S

∗
j , . . . , S

∗
m} is determined such that S∗

j = Smax
j is for the profit

criteria and S∗
j = Smin

j for cost criteria. The decision matrix is represented as
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S = (Sij)M×N , where Sij denotes the attribute value of the i-th alternative Ai

for the j-th criterion Cj .
The full algorithm of the SPOTIS method presented in [5] is as follows:
Step 1. Calculation of the normalized distances to ISP (4).

dij(Ai, S
∗
j ) =

|Sij − S∗
j |

|Smax
j − Smin

j |
(4)

Step 2. Calculation of the weighted normalized distances from ISP d(Ai,S
∗) ∈

[0, 1], according to (5).

d(Ai,S
∗) =

N∑
j=1

wjdij(Ai, S
∗
j ) (5)

Step 3. Determine the final ranking by ordering the alternatives by the
values d(Ai,S

∗). The better alternatives have smaller values of d(Ai, S
∗).

The important features of this method include its simplicity, robustness
against the rank reversal paradox, and the ability to utilize the Expected So-
lution Point (ESP). The ESP allows the decision-maker to define an expected
outcome and construct the ranking based on this point rather than the Ideal So-
lution Point (ISP). To apply the SPOTIS method with a selected ESP S+, one
should follow the standard SPOTIS procedure but replace the values of the Ideal
Solution Point S∗

j with the values of the ESP S+
j . The decision-maker should

select the values of S+ to align with the specific decision problem.
However, it is important to ensure that the selected ESP falls within the

problem’s scope, meaning S+
j should satisfy Smin

j ≤ S+
j ≤ Smax

j for every value
of j.

3.3 Proposed Fro-SPOTIS Method

We propose using Frobenius distance to incorporate information about perfor-
mance order in an alternative to the final result. In order to do that, we need
to extract information about the preferred performance order from the criteria
weights. The intuition behind this is as follows: if criterion Ci is most important
to us according to the weights, then we want it to have the best performance in
the top alternatives. To create this order, we need to create a ranking of R(C)
for the criteria in the problem.

For example, the importance weight vector w = [0.3, 0.5, 0.2] indicates that
C2 is the most important criterion, C1 is the second most important criterion
and C3 is the least important criterion in the given problem. This means that
the importance-based (decreasing) order of the criteria is C2 ≻ C1 ≻ C3, which
is characterized by the ranking vector r(C) = [r(Ci), i = 1, 2, 3] where r(Ci) is
the rank of the criterion Ci in the importance-based decreasing ordering. In this
example, we have r(C) = [2, 1, 3].

Step 1. Calculation of the normalized distances to the Ideal Solution Point
as was shown in (4).
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Step 2. Calculation of the normalized weighted distances di = d(Ai, S
∗) ∈

[0, 1], according to (5).
Step 3. The ranking matrix R as defined (6) is created by the ranked dis-

tances normalized from the ISP (dij(Ai, S
∗
j )) for each alternative. The ranking

should be done from the lowest to the highest values, as the values dij(Ai, S
∗
j ) are

lower if the alternative performs better (that is, it is closer to the ideal solution).

R =


r(A1)1 r(A1)2 · · · r(A1)m
r(A2)1 r(A2)2 · · · r(A2)m

...
...

. . .
...

r(An)1 r(An)2 · · · r(An)m

 (6)

Step 4. Calculate the vector of normalized Frobenius distances between each
row of the ranking matrix and the ideal order of the criteria dF (r(C), r(Ai))
according to (7).

fi = {dF (r(C), r(Ai))}, i ∈ {1, 2, . . . , n} (7)

Step 5. Define the parameter τ ∈ [0, 1], which defines the tolerance within
which two alternatives are considered to be in a tie.

Next, for each two alternatives Ai and Aj apply the Equation (8), which
modifies their preferences di based on the τ . Note that Equation (8) should be
applied to both Ai and Aj for each pair. This means that if di is modified and
increased, dj should be decreased accordingly.

d′i =


di − τ

2 if |di − dj | ≤ τ and fi < fj

di +
τ
2 if |di − dj | ≤ τ and fi > fj

di otherwise

(8)

Finally, when there is no pairs of alternatives for which a change in di is re-
quired, the final ranking should be determined based on d′i values, where smaller
values suggest that the alternative is better. Flowchart presented in Figure 1
summarize Frobenius-SPOTIS method algorithm by visually representing it.

For a better understanding of the proposed approach, see a simple example
in the following section.

4 Experiments and Results

In this section, we present the results of our experiments using the proposed
Fro-SPOTIS method. We begin with a simple example that demonstrates how
the Fro-SPOTIS method can resolve tie situations in preferences. Following this,
we conduct two sensitivity analysis experiments to further explore the features
and limitations of the proposed method. Lastly, we discuss the application of
the Fro-SPOTIS method with the Expected Solution Point (ESP).
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Define decision problem

Criteria bounds

Criteria weights

Ideal Solution Point (ISP)

Expected Solution Point
(ESP)

or

For each alternative Ai

Calculate normalized
distance from ISP (ESP)

Calculate weighted
normalized distance
from ISP (ESP) (di)Decision matrix

Calculate i-th row of the
ranking matrix

Calculate normalized
Frobenius distance between

Ai and ideal order

Solve possible ties

Modify di and dj for every
two alternative which are

closer than τ

Build the final ranking
based on modified d'i

values (smaller is better)

Fig. 1. Flowchart of the Fro-SPOTIS method.

4.1 Simple Example

Assume that the following decision problem is consistent with the three alterna-
tives presented in Table 1, as well as with the criteria weights and the criteria
bounds. To keep the example simple, we consider using three criteria with values
in the range [0, 10] and criteria weights w = [0.1, 0.3, 0.6]. All criteria are con-
sidered profit; therefore, a value of 10 is the most desirable value in all criteria.

Table 1. Decision matrix, criteria weights and criteria bounds for the simple example.

Ai C1 C2 C3

A1 8 3 3
A2 5 8 2
A3 2 3 5
wj 0.1 0.3 0.6

Smin
j 0 0 0

Smax
j 10 10 10

If we proceed with this example with the original SPOTIS algorithm, the
alternative A1 will be evaluated as 0.65, while the other two alternatives will
be in a tie, with the weighted normalized distance from the ISP equal to 0.59
(for each of them). This makes these two alternatives incomparable, making it
impossible to prioritize one or another in the decision-making process. However,
analyzing the performance of the alternatives, we can see that A3 performs 2.5
times better in C3 (which is most important to us) than in A2. Of course, A2

performs better in C1 and C2; however, the importance of these criteria is low
for us, making them less desirable.

However, if we use the proposed Fro-SPOTIS algorithm that uses additional
information on the performance order in the alternatives, we will get the calcu-
lation shown in Table 2. First, for each alternative, the normalized distance from
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ISP dij(Ai, S
∗
j ) is calculated; then it is multiplied by weights. Furthermore, based

on dij(Ai, S
∗
j ) performance rankings r(Ai) are determined for each alternative.

Table 2. Calculation process for Frobenius SPOTIS.

C1 C2 C3

d1j(A1, S
∗
j ) 0.2000 0.7000 0.7000

d2j(A1, S
∗
j ) 0.5000 0.2000 0.8000

d3j(A2, S
∗
j ) 0.8000 0.7000 0.5000

wjd1j(A1, S
∗
j ) 0.0200 0.2100 0.4200

wjd2j(A1, S
∗
j ) 0.0500 0.0600 0.4800

wjd3j(A2, S
∗
j ) 0.0800 0.2100 0.3000

r(A1) 1 2 2
r(A2) 2 1 3
r(A3) 3 2 1

Next, if we apply Equations (7) - (8), we obtain the results shown in Table
3. The value di is the original SPOTIS output, and fi is the Frobenius distance
between r(Ai) and r(C). Finally, the values Pi show the final evaluation, and Ri

determines the rank of the alternatives; these values were obtained with τ = 0.05.
The addition of the Frobenius distance makes all three alternatives comparable,
and according to the results, A3 is the best.

Table 3. Final calculations for the Fro-SPOTIS method.

Ai di fi Pi Ri

A1 0.6500 0.8660 0.6500 3
A2 0.5900 0.8165 0.6150 2
A3 0.5900 0.0000 0.5650 1

This small experiment shows how the proposed Fro-SPOTIS method solves
ties in the rankings and preferences obtained with the original SPOTIS method.
The tolerance parameter τ also introduces some level of flexibility in terms of
adapting the method to the specific decision problem.

4.2 Sensitivity Analysis

In this section, we want to demonstrate the limitation of the proposed Frobenius
SPOTIS method, which appears due to the nature of the Frobenius SPOTIS in
some cases. In specific cases, the proposed method can violate the dominance
principle [11]. The dominance principle states that if one option is better than
another in at least one aspect and not worse in all other aspects, then the former
option dominates the latter, meaning that dominant one should be chosen over
the dominated one. Respectively, a situation in which a dominated alternative is
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preferred violates the dominance principle. To demonstrate how Fro-SPOTIS can
violate the dominance principle, we designed a sensitivity analysis experiment
presented further in this Section.

Consider a four-criterion decision problem, with criteria bounds [0, 10] for
each of the four criteria. Criteria weights are selected as w = [0.4, 0.3, 0.2, 0.1],
so we can show how the preference value changes with the change of the per-
formance order in the alternative. Each criterion is considered profit, therefore,
making 10 the most desirable value, and in all calculations, τ = 0.01 was used.

Suppose that we have the alternative A = [4, 3, 2, 1], which is quite far from
the ISP. Figure 2 is divided into four parts, and each of them demonstrates the
change in preference values for the Frobenius SPOTIS and the classic SPOTIS
depending on the value of Cj in the alternative. We can see that in three of the
four cases, Frobenius SPOTIS provides the same results as the original SPOTIS
because there are no ties or close values. However, in the case of criterion C4,
the gradual change of its value causes a violation of the dominance principle.
The cause of this behavior is that with a small weight w4 = 0.1, a change of the
C4 criterion value can trigger correction of the preference according to (8).

0 2 4 6 8 10
C1 value

0.4
0.5
0.6
0.7
0.8
0.9

Frobenius SPOTIS

2 4 6 8 10
C2 value

Original SPOTIS

2 4 6 8 10
C3 value

Original value

2 4 6 8 10
C4 value

A = [4 3 2 1]    w=[0.40, 0.30, 0.20, 0.10]

Fig. 2. Change in the preference value depending on Cj value for alternative
A = [4, 3, 2, 1] for SPOTIS and Fro-SPOTIS methods.

This case, however, is synthetically created, and normally such situations
should not occur. Additionally, if one wants to avoid such situations, Frobenius
distance can be used with a small value of τ or only in the case of ties in the
ranking.

4.3 Influence of τ value on results

In this section, we describe the experiment, which demonstrates how different
values of τ influence the final results after modification of the original SPOTIS
preferences. To address this, we design a simple simulation study on random
decision matrices. Each decision matrix consists of four criteria and ten alterna-
tives and is filled with integers drawn from the uniform probability distribution
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with a range [0, 100]. The first two criteria were profit and the other two costs.
The weights of the criteria were drawn from a uniform probability distribution
[0, 1] and normalized to sum up to 1. Next, alternatives were evaluated with both
original SPOTIS and proposed Fro-SPOTIS (with τ ∈ {0.01, 0.05, 0.10, 0.15}),
providing the same or different results, depending on the data. The correlation
between two corresponding rankings was calculated using Weighted Spearman’s
correlation rw. The described experiment was repeated 10,000 times, and results
were presented as boxplots in Figure 3 grouped by different values of τ .

 = 0.01  = 0.05  = 0.10  = 0.15
0.00

0.25

0.50

0.75

1.00

Fig. 3. Distibution of rw correlation values calculated between original and Frobenius
SPOTIS rankings for different values of τ .

In Figure 3, we can see how much Fro-SPOTIS results are correlated with
original SPOTIS results. It can be seen that for τ = 0.01, values of the rw
correlation are pretty close to 1, which means that there were little changes
in the rankings, but some outliers are present. For this value of τ , we expect
that only ties on very similar alternatives will be affected. For τ = 0.05, the
correlation falls, with worst outliers below rw = 0.5, while the median is still
quite close to 1.0. In the other two cases, the median falls further, but we do
not have any outliers lower than zero, which means that even despite the low
correlation, the results are still correlated.

However, even if it is possible to use high values of τ , we advise against it.
The reason is that with the larger value of τ , it is possible for the Fro-SPOTIS
to violate the dominance principle. Therefore, we suggest using only small values
of τ , mainly to help bring additional information to tie-solving or to strongly
differentiate close alternatives.

4.4 Usage of the Expected Solution Point

The SPOTIS method stands out among most MCDA methods due to its flexi-
bility in allowing the use of the Expected Solution Point (ESP) in place of the
Ideal Solution Point (ISP) during calculations. This feature enables the decision-
maker to guide the ranking process toward a solution that better reflects specific
goals, expectations, or preferences relevant to the decision problem.
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Similarly, in the Fro-SPOTIS variant, the ESP can be used instead of the
ISP, maintaining compatibility with the core SPOTIS mechanism. To apply this,
the ISP values are simply replaced with ESP values. This substitution is valid
because the Frobenius distance values fi, which capture deviation across the
entire performance matrix, are calculated independently of the reference point
(ISP or ESP). Meanwhile, the distance values di retain their role by representing
the weighted normalized distance from each alternative to the selected reference
point, whether it be the ISP or ESP.

5 Conclusions

In this paper, we propose a novel MCDA method named Fro-SPOTIS, which ex-
plicitly incorporates information regarding preference ordering into the decision-
making framework. The proposed approach leverages the Frobenius distance to
quantify deviations between the desired ordering of alternatives, defined by the
decision-maker’s preferences, and the actual observed performance order of alter-
natives. Additionally, Fro-SPOTIS introduces a tolerance parameter τ , enabling
the decision-maker to control the conditions under which certain alternatives
are classified as incomparable, thereby providing greater flexibility in handling
decision uncertainty or preference ambiguity.

We illustrate the practical application of Fro-SPOTIS through a numeri-
cal example, complemented by sensitivity analyses examining the robustness of
the method to variations in both the attribute values of alternatives and the
tolerance parameter τ . These analyses demonstrate how the ranking outcomes
evolve in response to changes in input data and preference structures, provid-
ing insight into the method’s adaptability to diverse decision-making scenarios.
Furthermore, we present an experimental investigation highlighting potential
limitations of Fro-SPOTIS, notably cases where the method may violate the
dominance principle. Identifying these limitations offers valuable direction for
future research, in which we aim to address these issues and subsequently apply
Fro-SPOTIS to more complex, real-world decision problems to further validate
and enhance its practical utility.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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