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Abstract. Biomedical networks are critical for representing complex bi-
ological systems, and network curvature is a key structural property that
captures topological features not highlighted by traditional graph met-
rics. This study introduces a Graph Neural Network (GNN)-based ap-
proach for detecting communities in cancer-specific Gene Co-expression
Networks (GCNs), using Ollivier-Ricci curvature as an integral feature.
The inclusion of curvature has shown to enhance the detection of bio-
logically significant communities, improve network modularity, and en-
able finer partitioning. These preliminary results indicate that curvature-
based analyses can offer new insights into the organization of gene co-
expression networks, aiding in the understanding of biological modular-
ity, disease mechanisms, and functional interactions.

Keywords: GNN · Network Curvature · Biological System.

1 Introduction

The study of biological networks provides fundamental insights into the complex
relationships that regulate cellular processes and disease mechanisms. Advances
in bioinformatics and network science have enabled the construction of gene
co-expression networks, which represent functional associations between genes
based on their expression patterns across different biological conditions [13, 16,
25]. Identifying modular structures within these networks is a crucial task, as
communities often correspond to biologically relevant functional groups, signal-
ing pathways, or disease-related clusters. However, traditional community detec-
tion methods, such as Louvain and Greedy modularity optimization [21], may
fail to capture subtle hierarchical relationships within biological networks. Re-
cently, geometric and topological approaches, such as network curvature, have
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emerged as powerful tools to uncover hidden structural properties in complex
networks [4, 14].

Curvature measures, inspired by differential geometry, quantify local and
global deviations from an idealized network structure, offering new perspectives
on network robustness, modularity, and functional organization.

Recent advances in artificial intelligence, particularly in deep learning ap-
plied to graph models, have further improved our ability to analyze and in-
terpret complex networked data. Graph Neural Networks (GNNs) have gained
increasing attention due to their ability to learn node representations while pre-
serving the underlying graph structure [3]. Unlike traditional machine learning
models, which treat nodes as independent entities, GNNs incorporate relational
information, allowing them to capture higher-order dependencies within a net-
work. These models have been successfully applied in biomedical informatics,
including drug discovery, protein-protein interaction prediction, and gene func-
tion annotation [5–7]. One of the key tasks that GNNs can address is community
detection, which involves partitioning a graph into well-defined clusters by lever-
aging both topological and feature-based information. In biological networks,
this approach can reveal functional modules of genes, regulatory pathways, and
clusters associated with disease mechanisms [11]. However, existing GNN-based
methods often rely solely on adjacency-based representations without leveraging
additional structural descriptors. The incorporation of network curvature into a
GNN framework could provide a richer and more informative representation of
graph topology, potentially leading to improved community detection.

In this study, we propose a GNN-based framework for community detection
in cancer-specific gene co-expression networks, by integrating Ollivier-Ricci cur-
vature as a key feature. The primary goal of this work is to assess whether cur-
vature enhances the detection of biologically relevant communities compared to
classical clustering algorithms. To achieve this, we construct gene-disease inter-
action networks from the iNetModels 2.0 database, selecting five cancer-specific
gene co-expression networks corresponding to breast, colon, stomach, thyroid,
and pancreas tissues. Each network is analyzed by computing Ollivier-Ricci cur-
vature for its edges, providing a curvature-enhanced representation that is then
processed by a GNN-based community detection model. The framework is de-
signed to extract meaningful gene clusters while capturing the underlying struc-
tural properties of the network, ensuring a more refined partitioning of biological
modules.

The results demonstrate that the integration of Ollivier-Ricci curvature leads
to an increased number of detected communities, accompanied by an improve-
ment in modularity scores, indicating a stronger intra-community structure.

2 Related Work

The introduction of novel applications in Graph Neural Networks (GNNs) has
become an essential study area [26], particularly with the incorporation of net-
work curvature as a significant factor for improving node classification capabil-
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ities. GNNs, which have gained immense traction in recent years, exploit the
topological structures of graphs to perform tasks such as node and graph classi-
fication effectively [15, 12]. The foundations of GNNs were laid by early contribu-
tions such as those by Kipf and Welling, who proposed a layer-wise propagation
framework for semi-supervised node classification based on Graph Convolutional
Networks (GCNs) [18]. Graph Neural Networks (GNNs) operate on data struc-
tured as graphs, leveraging the graph’s inherent features and the relationships
between nodes. The theoretical foundation of GNNs is based on the concept of
message passing, where node states are updated by recursively aggregating and
transforming feature information from neighboring nodes. This iterative process
can be formalized as follows:

Initially, each node v is assigned a feature vector h
(0)
v = xv. The feature

vectors are updated through layers or iterations using the rule:

h(k)
v = σ

W (k)
∑

u∈N (v)

1

cvu
h(k−1)
u +B(k)h(k−1)

v

 ,

where h
(k)
v is the feature vector of node v at iteration k, N (v) denotes the set

of neighbors of v, W (k) and B(k) are trainable parameters specific to layer k, σ
is a non-linear activation function, and cvu is a normalization constant often set
as the cardinality of N (v) to average the contributions.

The objective of these iterations is to reach a stable state where the represen-
tations hv converge to a fixed point. This approach aligns with the theoretical
perspective of GNNs functioning as a form of contraction mapping in a complete
metric space, wherein each iteration brings the representations closer to a point
that is invariant under the mapping defined by the update rule.

In practice, this fixed point provides a powerful embedding for each node that
captures both local structure—through the aggregation from immediate neigh-
bors—and more global graph properties, as the effects of more distant nodes
are indirectly incorporated through multiple iterations. The stability and con-
vergence of this process are crucial for the practical effectiveness of GNNs and
are often guaranteed under conditions like bounded weights or specially designed
normalization schemes.

Moreover, these node embeddings derived from GNNs are versatile and can
be used for a variety of tasks, including node classification, link prediction, and
graph classification. Their performance on these tasks demonstrates the capabil-
ity of GNNs to capture and utilize the complex and rich information contained
within graph-structured data, adhering to both the graph’s topology and the
features of individual nodes.

In summary, the theoretical underpinnings of GNNs contribute significantly
to their ability to generalize well across different types of graph data, making
them an invaluable tool in the machine learning toolkit for handling data with
intricate relational structures.
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2.1 Advanced Measures of Curvature in Network Analysis

The analysis of network curvature offers insightful metrics that help understand
the geometric and topological properties of networks. These measures provide
crucial information on how networks deviate from being flat, affecting the dy-
namics within the network.

2.2 Forman-Ricci Curvature

The Forman-Ricci curvature, developed by Robin Forman, is an adaptation of
Ollivier-Ricci curvature for discrete networks. For an edge e connecting vertices
u and v with weights w(u), w(v), and w(e), the curvature is given by:

F (e) = w(e)

(
1

w(u)
+

1

w(v)

)
−

∑
e′∼e
e′ ̸=e

w(e)√
w(u′)w(v′)

This expression considers adjacent edges e′ with vertices u′ and v′, assessing
how edge weights contribute to local curvature. This curvature measure is par-
ticularly effective in identifying densely interconnected regions within a network,
indicating areas of high robustness or potential fragility.

2.3 Ollivier-Ricci curvature

The Ollivier-Ricci curvature provides a probabilistic measure of curvature based
on optimal transport. For an edge e = (u, v), it is defined as:

κ(e) = 1−W1(µu, µv)

Here, µu and µv are probability measures concentrated at vertices u and v respec-
tively, and W1 is the 1-Wasserstein distance, reflecting the cost of redistributing
mass from u to v. This curvature measure is insightful for evaluating how well
connected a network is, with lower curvature indicating better connectivity.

2.4 Bakry-Émery Curvature

Another important measure is the Bakry-Émery curvature, which extends the
notion of Ollivier-Ricci curvature to graphs. It considers the behavior of the
Laplacian operator on the graph and is indicative of the diffusive properties
of the network. High Bakry-Émery curvature implies that the graph has good
expansion properties and is well-connected.

2.5 Haantjes Curvature

The Haantjes curvature takes into account higher-dimensional structures within
the graph. It evaluates the curvature formed by considering paths rather than
edges alone, providing a more holistic view of the curvature within the network.
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This measure is particularly useful in networks where the relationships between
nodes involve complex interactions, such as in biological networks or intricate
social networks.

These curvature measures play vital roles in various fields. For instance, in
data communication, they help in designing more efficient routing algorithms by
understanding paths that minimize latency. In epidemiology, they can predict
how diseases might spread through different clusters within a network, iden-
tifying potential hotspots for more focused interventions. Understanding these
curvature metrics allows network engineers and data scientists to design more
robust, efficient, and resilient networks, tailored to the specific dynamics and
requirements of their respective fields.

3 Methods

In this study, we employ a GNN to perform community detection on a gene-
disease interaction network, leveraging Ollivier-Ricci curvature as an edge
feature and using the transcription factor (TF) status as a node feature. The
GNN architecture is based on a Graph Autoencoder (GAE), which learns
low-dimensional node representations through an encoder-decoder structure.
The primary goal is to evaluate whether Ollivier-Ricci curvature provides mean-
ingful structural information in biological networks and improves the detection
of biologically relevant communities.

3.1 Dataset Preprocessing

The dataset consists of a gene-disease interaction network, where nodes
represent genes, and edges indicate interactions between them. Each edge is as-
signed a curvature value obtained from Ollivier-Ricci curvature computa-
tion. Additionally, nodes are annotated with a binary feature indicating whether
the gene is a transcription factor (TF) ({1 if TF, 0 otherwise}). The dataset
is processed as follows:

1. Loading the network: The edge list contains gene pairs with their corre-
sponding Ollivier-Ricci curvature values.

2. Node encoding: Gene names are mapped to unique integer IDs, as required
by PyTorch Geometric.

3. Graph construction: A NetworkX graph (G) is created, and the adja-
cency structure is converted into a PyTorch Geometric Data object.

3.2 Graph Neural Network Architecture

The GNN used for community detection was based on a Graph Autoencoder
(GAE), consisting of:

– Encoder: Two layers of GCN that transform the input feature matrix into
a low-dimensional latent space.

– Decoder: A single GCN layer that attempts to reconstruct the original
feature space.
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Mathematical Representation Given a graph G = (V,E), let X be the
feature matrix, where each node v ∈ V has a feature vector xv consisting of its
transcription factor status. The encoding process is as follows:

H = ReLU(W1 · GCNConv(X,A)) (1)

Z = ReLU(W2 · GCNConv(H,A)) (2)

where A is the adjacency matrix, W1,W2 are trainable weight matrices, H is
the hidden representation, and Z is the final embedding. The decoder attempts
to reconstruct X from Z using another GCN layer.

3.3 Model Training

We used Mean Squared Error (MSE) loss for quantifying prediction accu-
racy in model training, optimizing reconstruction quality:

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2 (3)

where Yv, Ŷv and N are the observed and predicted values, and the number
of data points of the sample.

The training process follows these steps:

1. Initialize model weights with an Adam optimizer (learning rate = 0.01,
weight decay = 5× 10−4).

2. Train for 200 epochs, applying ReLU activation and updating weights
via backpropagation.

3. Extract node embeddings after training.

4 A Case Study on Trascriptomic Data

Our model have been trained on real-world dataset constructed from iNetMod-
els 2.0 database [1] that includes normal tissue and cancer-specific Gene Co-
expression Networks networks. iNetModels provides 108 biological networks of
different tissues. In this study we selected 5 tissues (breast, colon, stomac, tyroid,
pancreas and cancer-specific networks. Table 1 summarizes the main characteris-
tics of the networks. Also, we used Molecular signatures database (MSigDB) [19]
to retrieve the information oncogenic signatures. MSigDB contain gene sets rep-
resenting potential targets of regulation by transcription factors or microRNAs.
For each network, we calculated the Ollivier-Ricci curvature a metric derived
from Riemannian geometry. This measure assesses the shape of the network at
each node and edge, providing insights into the overall topological structure.

We applied our GNN-based model to each GCN to extract communities, then,
to assess the impact of Ollivier-Ricci curvature, we recomputed communities
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Table 1. Characteristics of the GCN networks.

Network Nodes Edges
Breast 463 20000
Colon 950 1000

Stomac 933 1000
Tyroid 1648 2000

Pancreas 475 1000

without curvature. Table 2 reports the number of detected communities, the
modularity and ARI for each GNC networks, by considering the curvature and
without curvature. We compared the results using:

– Modularity is a widely used metric for evaluating the quality of community
structure in a network. It measures the strength of division of a network into
modules (communities) by comparing the actual density of edges within
communities to the expected density if edges were distributed at random
[22]. The modularity score Q is computed as:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (4)

where Aij represents the adjacency matrix, ki and kj are the degrees of nodes
i and j, m is the total number of edges, and δ(ci, cj) is 1 if nodes i and j
belong to the same community and 0 otherwise.
Modularity values typically range from -1 to 1, where higher values indicate
a stronger community structure. Generally, values above 0.3 are considered
indicative of significant community structure [8, 9]. A high modularity score
suggests that the network exhibits a well-defined clustering pattern, while
lower values indicate weak or no community structure. However, modularity
has certain limitations, including a well-known resolution limit, which can
prevent the detection of small communities in large networks [10]. Alterna-
tive methods, such as modularity optimization using the Louvain algorithm
[2], have been proposed to efficiently identify communities in large-scale net-
works.

– Adjusted Rand Index (ARI): Evaluates similarity between clustering
results with and without curvature. The Adjusted Rand Index (ARI) is
a measure used to evaluate the similarity between two clustering results by
adjusting for chance [17]. Given two partitions of a set, the ARI is defined
as:

ARI =
RI − E[RI]

max(RI)− E[RI]
(5)

where RI (Rand Index) accounts for the number of pairs correctly classified
in the same or different clusters, and E[RI] is its expected value under
random assignment.
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The ARI ranges from -1 to 1, where 1 indicates perfect agreement, 0 corre-
sponds to random clustering, and negative values suggest worse-than-random
agreement [23]. Unlike other clustering evaluation measures, ARI is partic-
ularly robust against random assignments and provides a more reliable way
to assess clustering performance. It is commonly used in applications such
as gene expression analysis.
One of the advantages of ARI is its ability to handle different numbers of
clusters in the compared partitions. This makes it especially useful in cases
where the true number of clusters is unknown or when evaluating clustering
algorithms with varying parameter settings. However, ARI is sensitive to
the size of clusters; for highly imbalanced cluster distributions, alternative
measures such as the Normalized Mutual Information (NMI) [24] or the
Variation of Information (VI) [20] may provide complementary insights. In
practical applications, ARI is often used in conjunction with other clustering
metrics to obtain a more comprehensive evaluation of clustering quality.
Table 2 reports the number of detected communities, the modularity and
ARI for each GNC networks, by considering the curvature and without cur-
vature.

Table 2. Effect of Ollivier-Ricci curvature on Community Detection: Comparison of
Number of Communities, Modularity, and Adjusted Rand Index (ARI). Results report
the number of communities computed by considering the curvature (Communities w-
C ) and without considering this one (Communities w/o-C ). Similarly, it also report
the information concerning modularity (Modularity w-C and Modularity w/o-C, re-
spectively).

Network Communities w-C Communities w/o-C Modularity w-C Modularity w/o-C ARI
Breast 33 18 0.3731 0.2529 0.1
Colon 47 32 0.878 0.7 0.12

Stomac 51 23 0.754 0.555 0.1021
Tyroid 85 72 0.9976 0.763 0.1

Pancreas 31 26 0.721 0.584 0.153

The results demonstrate that the predicted number of communities is con-
sistently higher when Ollivier-Ricci curvature is used as a feature compared to
when it is not. Additionally, modularity, which quantifies the strength of com-
munity structures in a network, shows an increase when curvature is included,
indicating that the detected communities are more internally cohesive and better
separated from each other. A key metric we analyzed is the Adjusted Rand Index
(ARI), which quantifies the similarity between two clustering results while cor-
recting for chance. An ARI close to 1 indicates that the two clustering solutions
are nearly identical, meaning that the inclusion of Ollivier-Ricci curvature has
little to no impact on the community structure. Conversely, a low ARI (typically
< 0.5) suggests that the curvature significantly alters the community structure,
leading to a different partitioning of the network.
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In our results, ARI values remain relatively low (ranging between 0.1 and
0.15), which might initially seem to indicate weak clustering. However, in this
context, the low ARI is actually evidence that Ollivier-Ricci curvature has a
strong influence on community formation. The fact that clustering solutions
with and without curvature are markedly different suggests that curvature is
reshaping the network structure in a meaningful way, leading to a new partition-
ing of gene interactions. This highlights that curvature is capturing additional
topological information that traditional feature representations do not, thereby
impacting the way communities are detected.

From a biological perspective, this means that the introduction of Ollivier-
Ricci curvature allows the model to identify alternative, potentially more bio-
logically relevant community structures. Traditional clustering solutions might
merge functionally distinct gene groups into fewer clusters, whereas curvature-
enhanced GNNs may better reflect the modular organization of biological pro-
cesses, capturing subtle interactions that classical methods overlook.

For example, in the breast cancer network, the number of communities in-
creases from 18 (without curvature) to 33 (with curvature), and modularity rises
from 0.2529 to 0.3731, indicating stronger intra-community connectivity. Simi-
larly, in the colon network, the number of communities increases from 32 to 47,
and modularity improves significantly from 0.7 to 0.878, suggesting a more de-
fined community structure. The thyroid network also exhibits a notable increase
in modularity when curvature is included (from 0.763 to 0.9976), reinforcing the
idea that Ollivier-Ricci curvature enhances community separation.

To further assess the impact of Ollivier-Ricci curvature on community struc-
ture, we compared the GNN-based results with classical community detection
algorithms, i.e. Louvain and Greedy.

Table 3 reports the number of detected communities and the modularity val-
ues obtained with our model and with classical Louvain and Greedy algorithms.
The number of detected communities in the GNN model is consistently higher,
often by a significant margin. For instance, in the pancreas network, our GNN
identified 248 communities, whereas Louvain and Greedy detected only 84. This
discrepancy suggests that curvature-based representations may reveal finer-scale
biological structures that traditional methods tend to merge into larger, less
specific communities.

Moreover, modularity values in our GNN model remain superior compared
to those obtained with Louvain and Greedy. Notably, in the colon network, the
modularity score for our GNN is 0.878, whereas Louvain and Greedy produce
very low scores (0.002), indicating that traditional algorithms struggle to de-
tect well-separated clusters in this case. Similarly, in the stomach network, our
GNN model achieves a modularity of 0.754, significantly outperforming Louvain
(0.117) and Greedy (0.101), reinforcing the idea that curvature-enhanced GNNs
offer a more refined and biologically relevant partitioning of the gene interaction
networks. These results highlight the potential biological significance of using
Ollivier-Ricci curvature in gene interaction networks. The increased number of
communities detected when curvature is included suggests that this feature helps
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to identify finer subdivisions within the biological network, which could corre-
spond to distinct functional modules, signaling pathways, or disease-related gene
clusters. Traditional community detection methods, such as Louvain and Greedy,
may be too coarse to capture these subtle subdivisions, leading to overly merged
clusters that obscure underlying biological structures.

Table 3. Comparison of GNN-based results with Louvain and Greedy algorithms

Breast Colon Stomac Tyroid Pancreas
N. community GNN 33 47 51 85 248

N. community Louvain 32 2 7 64 84
N. community Greedy 31 2 3 64 84

Modularity GNN 0.3731 0.878 0.754 0.9976 0.721
Modularity Louvain 0.193 0.002 0.117 0.89 0.994
Molularity Greedy 0.1882 0.002 0.101 0.89 0.994

5 Conclusion

In this study, we introduced a framework for community detection in cancer-
specific Gene Co-expression Networks by leveraging Graph Neural Networks
(GNNs) and network curvature measures. Our results demonstrate that the in-
corporation of Ollivier-Ricci curvature as a node feature significantly influences
the structure of detected communities. Specifically, we observed that when curva-
ture is included, the number of predicted communities increases, and the mod-
ularity values improve, indicating stronger intra-community connectivity and
clearer separation of biological clusters.

Furthermore, when comparing the GNN-based community detection results
with classical algorithms such as Louvain and Greedy, we found that the GNN
model detects a significantly higher number of communities, often with improved
modularity. This implies that curvature-based graph representations enhance
the resolution of community detection, potentially uncovering subtle biological
relationships that conventional methods overlook.

From a biological standpoint, these findings suggest that Ollivier-Ricci cur-
vature could serve as a valuable tool for improving the functional interpretation
of gene co-expression networks, aiding in the identification of biological modules,
signaling pathways, and disease-related clusters. By refining the way we detect
and interpret network communities, curvature-enhanced GNNs could contribute
to a deeper understanding of cancer-related gene interactions, ultimately sup-
porting advancements in biomedical research and precision medicine.

Future work will focus on further validating these findings through biological
enrichment analyses, integrating additional multi-omic datasets, and exploring
other curvature measures to assess their impact on community detection. Ad-
ditionally, extending this approach to larger and more diverse cancer datasets

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_20

https://dx.doi.org/10.1007/978-3-031-97632-2_20
https://dx.doi.org/10.1007/978-3-031-97632-2_20


Title Suppressed Due to Excessive Length 11

could provide further insights into the biological relevance of curvature-based
network partitioning.
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