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Abstract. Host-based Intrusion Detection Systems (HIDS) collect host
system logs and generate alerts when the host is attacked. However,
existing research fails to adequately capture the spatiotemporal relation-
ships within host behaviors, limiting the accuracy of their representation
and modeling. To address this, we propose a spatiotemporal graph repre-
sentation learning method. This method extracts key data from system
logs to construct provenance graphs. A spatiotemporal joint encoder de-
composes features along spatial and temporal dimensions independently,
then aggregates them to capture spatiotemporal dependencies, explic-
itly modeling these relationships in host behavior. Experiments on the
Streamspot and DARPA-Theia datasets show that the proposed method
effectively captures interaction patterns and outperforms baseline models
in recall rate, false positive rate, and other evaluation metrics.

Keywords: Network Attack Detection · Graph Deep learning · Spatial-
Temporal Representation.

1 Introduction

Network attack detection has been a key focus in computer security research. As
hosts are primary targets, these attacks often leave traceable footprints within
the host systems. Host-based Intrusion Detection Systems (HIDS) can effectively
capture these traces and identify attack behaviors, playing a critical role in
network security defense [1].

To better represent the contextual information of host events, existing re-
search models log data as a Directed Acyclic Graph (DAG), known as the prove-
nance graph, as shown in Fig.1. In this graph, nodes represent system entities,
and edges represent system events. The Provenance Graph organizes the spatial
(semantic) and temporal (interaction) information of each system entity, offering
a crucial framework for capturing complex behavior patterns [2–8].

However, existing methods typically represent semantic and temporal infor-
mation implicitly, which limits effective modeling of system behavior. In log
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time 1 process 2 fork process 3
time 2 process 3 read file 1
time 3 process 3 read socket 4
time 4 process 3 write file 5
time 5 process 3 write file 7
time 6 process 6 read file 7
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Fig. 1. System Log to Provenance Graph

data, substantial semantic information is often sparse, providing limited details
on activity. Additionally, temporal interactions exhibit multiple structural forms,
complicating the learning of underlying spatiotemporal dependencies.

In this study, we construct a provenance graph by extracting key informa-
tion from logs and explicitly model the semantic and interaction data of enti-
ties using Graph Attention Networks (GAT) [9] and Temporal Graph Networks
(TGN) [10]. A spatiotemporal joint encoder decomposes features along spatial
and temporal dimensions, followed by joint aggregation to capture spatiotem-
poral dependencies. Attack behaviors are assessed by combining reconstruction
errors from the decoder with anomalous node associations. Experimental results
demonstrate that the proposed method significantly outperforms baseline models
across several public datasets.

The main contributions of this study can be summarized as follows:

– Provenance Graph Construction: We extracted key entity information from
system logs and constructed a provenance graph to describe system behavior.

– Joint Spatial-Temporal Representation: We independently decomposed fea-
tures along spatial and temporal dimensions, then aggregated them jointly to
capture spatiotemporal dependencies, explicitly modeling these relationships
in host behavior.

– Attack Behavior Association: During the training phase, we use an encoder
to learn normal behaviors. In the testing phase, the system assigns higher
Reconstruction Error (RE) scores to deviations from the known baseline be-
havior and associates attack behaviors through queue linking. This approach
improves the accuracy and precision of the alert system.

The paper is structured as follows: Section 2 reviews related work on host
anomaly detection; Section 3 introduces the proposed model and its technical
details; Section 4 presents data processing and experimental results and discusses
the findings; and the final section concludes the paper and outlines future work.

2 Related work

In recent years, Advanced Persistent Threats (APT) have become a significant
challenge in cybersecurity. Intrusion Detection Systems (IDS) play a crucial role
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in detecting attack behaviors within host systems. IDS are primarily classified
into two categories: anomaly-based detection [2–6, 11–16] and heuristic rule-
based detection [17–23]. Effectively detecting APT attacks is challenging, as
these attacks often exploit zero-day vulnerabilities. Defense systems relying on
known threat intelligence struggle to identify new or unknown attack strategies.
Current research mainly focuses on anomaly-based IDS, which analyze system
behavior data—such as network traffic, process activity, and file operations—to
establish baselines of normal behavior. This method is effective in identifying
deviations from normal host activities.

Recently, embedding techniques have been widely applied in Intrusion Detec-
tion Systems. These methods typically use machine learning models, including
neural networks and n-gram models, to convert logs into vector representations.
Unicorn [4] employs graph sketching technology to summarize system behav-
ior over long periods, addressing slow attacks that occur over extended time
spans. Deeplog [27] models system logs as natural language sequences using Long
Short-Term Memory (LSTM) networks. Attack2Vec [28] uses a time-based word
embedding model to simulate attack steps. Flash [29] combines Graph Neural
Networks (GNN) and Word2Vec embeddings in a lightweight classifier to detect
potential malicious activities.

However, existing research often fails to explicitly model the spatiotemporal
relationships within host behaviors, making it difficult to learn and accurately
represent system activities. As a result, current methods need further enhance-
ment to explicitly capture spatiotemporal dependencies. This paper proposes
a spatiotemporal joint encoder method that independently extracts features in
both the spatial and temporal dimensions, followed by joint aggregation to cap-
ture spatiotemporal dependencies. The decoder’s reconstruction error and its
correlation with anomalous nodes are then used to accurately detect attack be-
haviors.

3 Proposed Method

Fig.2 illustrates the construction process of Joint Spatial-Temporal Host Intru-
sion Detection System (JST-HIDS), designed to analyze host behavior across
spatial and temporal dimensions. It covers behavioral logs, such as network, file,
and process activities. Through spatiotemporal fusion representation, JST-HIDS
learns host behavior patterns effectively, enhancing anomaly detection and gen-
erating precise alerts by correlating attack behaviors.

The process begins by constructing a comprehensive traceability graph from
the log data. Next, the spatiotemporal encoder independently extracts features
from both spatial and temporal dimensions. Through joint aggregation, it cap-
tures spatiotemporal dependencies. The decoder identifies anomalous events by
predicting and reconstruction error from the true values. Finally, event associ-
ations are analyzed to detect attack behaviors, thereby enhancing the accuracy
of attack analysis.
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3.1 Construction of the Provenance Graph

This study constructs the provenance graph by extracting log data from the
host’s kernel auditing systems. These systems track all operational activities
within the host, including processes, files, network addresses, and other entities.

In the provenance graph, nodes represent system entities (e.g., processes,
files, network addresses), while edges indicate control flow (e.g., process 1 calling
process 2) and data flow (e.g., process 1 writing to file 1) between entities.
We focus on system events related to attack steps, as listed in Table1. The
provenance graph organizes and presents the causal relationships and contextual
information of each system entity.

Table 1. System Events and Type

events type
process and file read,write,create,chmod,rename

process and process fork,clone,execve,pipe
process and ip sendto,recvfrom,recvmsg,sendmsg

In-depth analysis of the provenance graph reveals correlations between at-
tack behaviors and their temporal sequence, offering a comprehensive view for
constructing an attack chain. This analysis aids in accurately identifying attack
patterns and provides essential support for attack tracing and the development
of defense strategies.
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Fig. 2. Construction Process of JST-HIDS
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3.2 Spatiotemporal Joint Representation

The provenance graph contains both temporal and spatial information, as shown
in Fig.2. In the anomaly detection process, a benign provenance graph is used
to simultaneously train the encoder and decoder. The goal of the training is to
minimize the error between the actual edge type (when a new edge appears in
the graph) and the type predicted by the decoder from the embedded vector of
the edge. This error is referred to as the Reconstruction Error (RE).

During the testing phase, if the graph structure encoded by the edge’s em-
bedding closely matches the structure observed from benign system activities
in a similar temporal context, the decoder assigns a small reconstruction error.
Otherwise, the decoder assigns a larger reconstruction error, with the magnitude
of the error reflecting the degree of deviation from the normal baseline. Host be-
haviors in the test samples with a reconstruction error exceeding a predefined
threshold are identified by the detection module as anomalous behaviors.

Spatial Semantic Embedding of Entities in the Provenance Graph.
Entities in the provenance graph are categorized into three types: processes, files,
and network addresses. First, the features of these entities (such as command
lines, file paths, and IP addresses) are converted into natural language sentences.
For example, the file path “/usr/local/bin/app” is transformed into the sentence
“usr local bin app”. Next, the Natural Language Processing (NLP) technique [30]
is applied to eliminate meaningless non-natural language components, such as
the hash string found in the path. Finally, FastText [31] is used to project these
sentences into numerical vectors, generating the semantic embedding fi for each
node i.

Entity Temporal Interaction Information Embedding. To capture the
evolving characteristics of entity interactions in a dynamic provenance graph,
node states record the interaction history of each node. At time t, the historical
information of the provenance graph is represented by the state vector si(t) for
each node i, which compresses the entity’s interaction history. When a new node
is added to the graph, its state is initialized as a zero vector and updated as it
interacts with other nodes. For instance, at time t, when a new edge eij appears,
indicating an interaction between nodes i and j, the message m transmitted by
edge eij , such as a process writing to a file, is calculated. This message updates
the state vectors si(t) and sj(t) for nodes i and j, respectively. The messages
are computed from the perspectives of both the source node and the destination
node:

mi (t1) = msg (si (t0) , sj (t0) , ∆t, eij (t1)) (1)

mj (t1) = msg (sj (t0) , si (t0) , ∆t, eij (t1)) (2)

To thoroughly capture the characteristics of dynamic provenance graphs as
they change over time, node states are used to record each node’s interaction
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history. The Gated Recurrent Unit (GRU) model [32] is employed to continuously
update the node states through iterative processing:

si (t1) = GRU (mi (t1) , si (t0)) (3)

The encoder uses a Temporal Graph Network (TGN) [10] architecture to
encode source graph features into edge embeddings. At time t, the model, based
on Graph Neural Networks (GNNs), generates edge embeddings fet for new
edges:

fi (t) = Encoder (i, t) (4)

fi (t) =
∑

j∈ΓK
i ([0,t])

h (si (t) , sj (t) , eij) (5)

fet = fvsrc + fvdes (6)

This formula represents the embedding of an edge fet at time t in a dynamic
graph. The edge embedding is computed as the sum of the embeddings of the
source node fvsrc and the destination node fvdes .

Learning Trajectories with Spatiotemporal Joint Embedding. Estimat-
ing probability distributions related to time and semantic spaces is a complex
task, but it plays a crucial role in capturing spatiotemporal patterns of host
behavior. However, traditional methods extract the semantic space information
distribution p(s|t) under time conditions. However, the representations learned
from p(s|t) are often implicit and limited, leading to a reduction in expressive
power. To address this issue, we integrate semantic space and interaction tem-
poral features, learning the spatiotemporal correlations. To effectively capture
the correlations in both spatial and temporal domains, we adopt a generalized
graph neural network (GNN) model with a three-layer structure [33], which aids
in learning the joint spatiotemporal distribution. Specifically, the information
update process of vertex v is as follows:

mi
vn = ReLu

(
f i
n + f i

evn
+ f i

ωvn

)
+ ϵ (7)

The message mi
vn is updated by combining the features of node n, the edge evn,

and the normalized edge weight fωvn , followed by a ReLU activation and adding
noise ϵ.

mi
evn

= MLP
(
Concate

(
f i
v, f

i
n

))
(8)

The edge message mi
evn

is updated by concatenating the features of nodes v and
n, and passing the result through Multi-Layer Perceptron(MLP) [33].

mi
v =

∑
n∈V

exp(αmvn)∑
j∈N(V ) exp(αmvj)

(9)

The equation computes the aggregated message mi
v for node v at the i-th iter-

ation, where mvn represents the information exchanged between node v and its
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neighboring nodes n. This is done by performing a weighted sum of the informa-
tion from all neighboring nodes n in the graph, with the weights α determined
by an attention mechanism based on the information.

f i+1
evn

= MLP (f i
evn

+ c ·
∣∣∣∣f i

evn

∣∣∣∣
2
·

mi
evn∣∣∣∣mi
evn

∣∣∣∣
2

) (10)

The equation describes the feature update process for edge evn at the i+1-th
iteration. f i

evn
represents the feature of edge evn at the i-th iteration, while mi

evn

denotes the information exchanged between node v and its neighboring node n.
Both

∣∣∣∣f i
evn

∣∣∣∣
2

and
∣∣∣∣mi

evn

∣∣∣∣
2

are normalized using their respective L2 norms. The
constant c is used to regulate the normalization factor. All these components are
processed through MLP, resulting in the updated feature f i+1

evn
for edge evn.

f i+1
v = MLP (f i

v + c ·
∣∣∣∣f i

v

∣∣∣∣
2
· mi

v

||mi
v||2

) (11)

This equation updates the feature f i+1
v of node v, following a similar approach

as the previous equation. Here, f i
v represents the feature of node v at the i-th

iteration, and mi
v denotes the aggregated message for node v. Both

∣∣∣∣f i
v

∣∣∣∣
2

and∣∣∣∣mi
v

∣∣∣∣
2

are normalized using their respective L2 norms. After normalizing these
features and messages, they are processed through MLP, resulting in the updated
feature f i+1

v for node v.

Rp (evn) = MLP (concat(fv, fevn
, fn)) (12)

This equation is used to make the final prediction for edge evn. First, the feature
vectors of the two nodes v and n along with the edge feature vector fevn are
concatenated to form a unified vector containing all relevant information. This
concatenated vector is then processed through MLP to predict the edge, with
the resulting output representing the probability distribution over the possible
edge types.

RE = CrossEntropy (Rp (evn) , Rr (evn)) (13)

The output of the decoder is a vector Rp (evn), representing the model’s pre-
dicted probabilities for edge et being one of the edge types. During training, the
model’s optimization objective is to minimize the RE between Rr (evn) and the
observed edge type Rp (evn) from the benign provenance graph. During testing,
for edges whose structural and temporal context information is similar to those
learned from the benign provenance graph, the model assigns a lower RE score.
Conversely, if there are edges in the graph that significantly deviate from the
known normal system baseline behavior, the model assigns a higher RE score.

3.3 Anomaly Alarm Based on Entity Associations

After obtaining the reconstruction errors for each event, we construct a queue
based on the associative relationships between system entities to accurately pin-
point anomalous events. The queue stores the related events, and anomalies are
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detected by calculating the sum of the RE values of the nodes within the queue.
An associative queue Q is used to store events based on the association between
system entities. If there is a strong association between events Ei and Ej , they
will be stored in the same queue:

Q = (Ei, Ej) | Edge(Ei, Ej) = 1 (14)

Where Edge(Ei, Ej) = 1 indicates that there is a direct edge or calling rela-
tionship between events Ei and Ej , meaning that one event calls or triggers the
other.

REqueue =
∑

(Ei,Ej)∈Q

RE(Ei) (15)

If REqueue ≥ Talarm, then trigger alarm. (16)

When the total RE exceeds a predefined threshold, the system triggers an alarm.
The threshold is set with careful consideration of the system’s fault tolerance
and normal operating range, ensuring that alarms are triggered only when a
node’s error significantly deviates from normal values and exhibits strong as-
sociations with other anomalous nodes. This method effectively prevents false
alarms caused by minor errors in local or unrelated nodes, thereby improving
the accuracy and precision of the alarm system.

4 Evaluation and Discussion

In this chapter, we compare the proposed method with the existing state-of-
the-art methods [4, 29], demonstrating the superiority and effectiveness of the
approach presented in this paper.

4.1 Experimental Setup

All experiments were conducted on a server running Ubuntu 18.04 with 64GB
of RAM and a 2.20GHz 20-core Intel Xeon CPU. The node feature embedding
dimension is 16, the node state dimension is 100, the neighborhood size is 20, and
the edge embedding dimension is 200. We recorded the outliers (reconstruction
errors) for each event in different systems and labeled the anomalous queues
based on the event reconstruction errors (the process is shown in the Fig.2).
The threshold is determined by the upper limit when testing for partial benign
behavior. Finally, we computed the accuracy, recall, and F1 score, with the
formulas as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Recall =
TP

TP + FN
(18)
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Precision =
TP

TP + FP
(19)

F1 = 2× Precision×Recall

Precision+Recall
(20)

4.2 Datasets

We used two publicly available datasets, StreamSpot and Darpa-e3-Theia, as
shown in Table 2. The following provides a detailed description of these datasets:

The StreamSpot dataset contains system logs from six different scenarios,
with five normal scenarios, including YouTube, email detection, download tasks,
CNN, and VGame. The attack scenario involves downloading a program from a
malicious URL and exploiting a flash vulnerability to gain system administrator
privileges.

The DARPA TC dataset is from the Transparent Computing (TC) project
by the Defense Advanced Research Projects Agency (DARPA). In this project,
red teams and blue teams conduct offense-defense exercises. During the process,
fine-grained system behavior data is collected for attack detection and forensic
tracing, which is then used to generate reports.

Table 2. Overview of Datasets

Dataset Nodes Edges Attack Edges Proportion
STREAMSPOT 999,999 89.8 millions 2,842,345 3.165%

E3-THEIA 690,105 32.4 millions 3,119 0.010%

4.3 Visualization

We visualize the extracted embedded features (Fig.3) and reconstruction errors
(Fig.4) on the StreamSpot dataset to intuitively demonstrate the effectiveness
of our proposed method.

The Fig.3 show the feature representations of attack events after PCA di-
mensionality reduction, marked by red areas. Our proposed spatiotemporal joint
representation method effectively captures the inherent spatiotemporal depen-
dencies in the data. The encoder distinguishes attack events from benign ones
with high accuracy, while the decoder produces higher reconstruction errors for
anomalous interaction patterns. This approach enhances the system’s ability to
differentiate between attack and normal behaviors. As illustrated, previously
unseen anomalous patterns complicate the original detector’s interpretation of
attack events, leading to higher reconstruction errors.
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Fig. 4. Reconstruction Error of Host Events in StreamSpot Dataset
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4.4 Metrics

We selected two HIDS[4, 29] as baseline methods for comparison and conducted
ablation experiments, the JST-S system uses only spatial features, the JST-T
system uses only temporal features, and the JST system uses the spatiotemporal
fusion features proposed in this paper. The experimental results are shown in
the Table3 below.

Table 3. Performance Comparison of HIDS

Streamspot Dataset
System Accuracy (%) Recall (%) F1 Score
Flash 98.0 95.0 97.4

Unicorn 96.2 93.1 95.4
JST-S 100.0 100.0 100.0
JST-T 100.0 100.0 100.0
JST 100.0 100.0 100.0

E3-THEIA Dataset
System Accuracy (%) Recall (%) F1 Score
Flash 35.9 99.8 23.3

Unicorn 36.4 100.0 24.4
JST-S 95.6 100.0 64.3
JST-T 84.1 88.9 30.8
JST 96.9 100.0 72.0

The proposed method effectively identifies potential entity interaction pat-
terns and significantly outperforms all baseline models across various evaluation
metrics, including recall and false positive rates. Specifically, while both baseline
models can detect nearly all attack behaviors in the E3-THEIA dataset, they
exhibit high false positive rates by misclassifying benign behaviors as attacks.
Observations reveal that the baseline models adopt a broader concept of attack
nodes, which reflects their reliance on only semantic information and shallow
temporal features, resulting in imprecise modeling and numerous false positives.
In ablation experiments, although the performance declines when only temporal
or semantic features are used, the proposed method consistently outperforms
baseline models. This indicates that the relationships among attack nodes helps
reduce false positives while maintaining a high recall rate.

We tested different thresholds on the E3-THEIA dataset and observed vari-
ations in True Positive Rate (TPR) and True Negative Rate (TNR), which rep-
resent the accuracy of detecting attack and benign behaviors, respectively. As
shown in the Fig.5, increasing the threshold reduces the false positive rate but
results in more missed detections. The optimal threshold for balancing these
metrics should be determined based on specific environmental conditions, em-
phasizing the importance of precise modeling of system behavior.
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Although the proposed method performs best in terms of false positive rate,
false positives remain an unresolved issue. This is particularly true in practical
applications, where the large volume of data may prevent timely processing of the
generated false positives [34]. The main cause of this phenomenon is the potential
misclassification of benign activity patterns as anomalies, which is a common
challenge in anomaly detection systems. Leveraging the world knowledge of large
language models [35] is a promising avenue for reducing false positives. We plan
to explore the integration of large model techniques in our future work to address
this issue.

5 Conclusion

To more accurately extract the embedding representations of host behaviors, this
paper proposes a joint spatiotemporal graph representation learning method that
explicitly models the spatiotemporal dependencies within host behaviors. The
method uses a spatiotemporal joint encoder to independently extract features
in both spatial and temporal dimensions, while a joint aggregation mechanism
effectively captures spatiotemporal dependencies. Based on the relationships be-
tween anomalous behaviors and host activities, an alarm queue is constructed,
which generates a comprehensive alarm. Experimental results on the Streamspot
and DARPA-Theia datasets demonstrate that the proposed method effectively
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identifies potential entity interaction patterns and significantly outperforms all
baseline models across multiple evaluation metrics, such as recall rate and false
positive rate. Future work will integrate large language models for alarm analysis
to further enhance the automated handling of false alarms, thereby improving
the method’s applicability in real-world scenarios.
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