
Static Load Balancing for Molecular-Continuum
Flow Simulations with Heterogeneous Particle

Systems and on Heterogeneous Hardware

Amartya Das Sharma1[0009−0009−8237−4295], Louis Viot1, Piet
Jarmatz1[0000−0002−5463−0740], Hauke Preuß1[0009−0002−9605−1322], and Philipp

Neumann2,3[0000−0001−8604−8846]

1 High Performance Computing,
Helmut Schmidt University, Hamburg, Germany

das-sharma@hsu-hh.de
2 High Performance Computing and Data Science,

Universität Hamburg, Hamburg, Germany
3 Deutsches Elektronen-Synchrotron (DESY)

Hamburg, Germany
philipp.neumann@desy.de

Abstract. Load balancing in particle simulations is a well-researched
field, but its effect on molecular-continuum coupled simulations is com-
paratively less explored.
In this work, we implement static load balancing into the macro-micro-
coupling tool (MaMiCo), a software for molecular-continuum coupling,
and demonstrate its effectiveness in two classes of experiments by cou-
pling with the particle simulation software ls1 mardyn. The first class
comprises a liquid-vapour multiphase scenario, modelling evaporation of
a liquid into vacuum and requiring load balancing due to heterogeneous
particle distributions in space. The second class considers execution of
molecular-continuum simulations on heterogeneous hardware, running
at very different efficiencies. After a series of experiments with balanced
and unbalanced setups, we find that, with our balanced configurations,
we achieve a reduction in runtime by 44% and 55% respectively.

Keywords: Coupled Simulations · Multiphase Simulations · Load
Balancing · Molecular-Continuum · Heterogeneous Architecture

1 Introduction

Coupled multiscale simulations are a viable way of reducing compute times while
retaining simulation details. Since they are often still computationally expensive,
leveraging the full capabilities of hardware and software is greatly desirable.

One example for coupled multiscale simulations are molecular-continuum sys-
tems: molecular dynamics (MD) simulation is employed in areas where greater
granularity is desired, and a classical computational fluid dynamics (CFD) solver

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


2 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

is used everywhere else. One way that MD simulations gain performance in het-
erogeneous situations is through effectively balancing computational load in a
distributed environment. In this work, we extend the molecular-continuum cou-
pling tool MaMiCo with static load balancing. We demonstrate the effectiveness
using well-established community codes, such as the open-source MD library ls1
mardyn, which leverages the node-level library AutoPas in its kernel, or the CFD
package OpenFOAM [27], using the popular coupling tool preCICE [4,5] as a
bridge to MaMiCo. Heterogeneity is considered in two ways: a multiphase sce-
nario modelling evaporation, introducing heterogeneity due to inhomogeneous
particle distributions, and a heterogeneous-architecture scenario with the simu-
lation running on a mix of x86 and aarch64 hardware.

In section 2, the dominant software stack of ls1 mardyn + AutoPas + Ma-
MiCo is introduced, and related work is discussed. Coupling and load balancing
are explained in section 3. We then describe and analyse the evaporation sce-
nario in section 4 and a homogeneous Couette flow scenario on heterogeneous
distributed hardware in section 5. We close with a short discussion and an out-
look to future work in section 6.

2 Background

2.1 Load Balancing

Particle simulations such as MD are often parallelised by using spatial domain
decomposition. The computational domain is divided into subdomains, and each
parallel process computes particle updates independently, exchanging relevant
information with neighbouring subdomains at the domain boundaries. As shown
in fig. 1a, a regular decomposition can be suboptimal in many cases, such as
those with varied particle density throughout the domain. Load balancing al-
lows to distribute the computational load more equally (as shown in fig. 1b)
and can dramatically increase the performance of the simulation. Balancing can
be static (ratios defined at the beginning of the simulation), which is the fo-
cus in this work, or dynamic (ratios calculated and subdomains adjusted based
on minimising some predefined "load", such as runtime, or particle imbalance).
Static imbalances occur from constant workload distribution, while dynamic im-
balances signify time-dependent changes in the scenario [3].

Load balancing in MD has been extensively explored since the 90s [11]. A
more recent review of load balancing techniques is given in [8]. Many community
codes such as GROMACS [1] or LAMMPS [16] offer static and dynamic load
balancing.

Load balancing in coupled simulations is relatively less explored, with a few
representative examples provided in the following. Ko et al. [10] introduce a co-
ordinated job submission API for computing clusters, so that coupled solvers
may execute synchronously and independently. They introduce load balancing
by changing the resources available to each coupled solver, assigning them more
or fewer nodes until their execution times match. Niemöller et al [14] demon-
strate a coupled CFD-CAA (Computational Aero-acoustics) simulation. They

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 3

implement load balancing with a partitioning approach based on space-filling
curves (SFC [24]). Pour et al. [17] discuss their aero-acoustic simulation cou-
pling three separate elements: an innermost domain where fully compressible
Navier–Stokes equations are solved, surrounded by a subdomain where invis-
cid Euler equations are solved, and a far-field where linearized Euler equations
are solved. They use the SFC-based algorithm SPartA [7] for load balancing.
Besseron et al. [2] couple a discrete elements method (DEM) solver XDEM with
the CFD solver OpenFOAM, using the preCICE library for coupling. Load bal-
ancing occurs by assigning MPI ranks manually between the two solvers, allowing
the solvers to operate in a black-box fashion and divide the computational load
internally over whatever resources it receives.

(a) Regular grid, with unequal parti-
cle distribution

(b) Irregular rectilinear grid, with a
more balanced particle distribution

Fig. 1. An illustration of 2D load balancing in MD. Dotted lines indicate process
boundaries, dividing the domain into four subdomains. Solid lines show global bound-
aries, and dots indicate particles.

2.2 AutoPas

AutoPas4 [6,19] is a node-level particle simulation library. It supports a vari-
ety of algorithmic MD configuration options and auto-tuning by sampling the
performance of configurations and dynamically switching between them without
intervention. These configurations include particle containers (linked lists, Verlet
lists, etc.), shared-memory parallel particle traversal schemes or data layouts. In
this work, we determine a configuration and keep it invariant, so as to not have
to consider additional variables when comparing results from our static load
balancing.
4 https://github.com/AutoPas/AutoPas

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://github.com/AutoPas/AutoPas
https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


4 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

In our work, we use rigid single-site molecules and short-range Lennard-Jones
interactions [12], and allow AutoPas to only use the linked cell container, result-
ing in a linear run time complexity O(N) with N being the number of molecules.
We allow sliced cell traversal, structure-of-arrays layout of data, and keep the
optimization newton3 enabled, which halves the number of force calculations.

2.3 ls1 mardyn

ls1 mardyn5 is an open-source MD solver for simulating small rigid molecules
at large time and length scales [15]. It focuses on thermodynamics and nanoflu-
idics, and its features include easy extensibility using a flexible plugin system
(which MaMiCo employs for coupling [9]) . Newer versions of ls1 mardyn allow
the usage of AutoPas at node level, and then ls1 mardyn handles the inter-node
orchestration, communication and balancing, leading to even better computa-
tional performance [19,6]. ls1 mardyn is built for HPC environments, supporting
parallelization via MPI and OpenMP, as well as vectorisation. The massive scale
at which ls1 mardyn is capable of running was demonstrated by Tchipev et
al. in [23], when they simulated 20 trillion atoms at up to 88% weak scaling
efficiency, recording up to 1.33 PFLOPS.

Additionally, ls1 mardyn supports diffusive and kd-tree based dynamic load
balancing [20,19]. Seckler et al. [21] used the kd-tree based balancing method to
balance load across heterogeneous hardware clusters; for systems with homoge-
neous particle densities, more than one rebalance was not required to find an
optimal domain decomposition across heterogeneous hardware.

2.4 MaMiCo

MaMiCo6 is an open-source software designed to couple microscopic (e.g. MD)
solvers with macroscopic (e.g. CFD) solvers in a domain decomposition sense,
enabling fully three-dimensional, transient molecular-continuum flow simulation
on strongly coupled time scales (i.e., one CFD time step corresponds to O(100)
MD time steps [13,9]). MaMiCo achieves this by defining an overlap domain
within a larger CFD region (where the MD simulation is embedded) and by
exchanging data between the solvers within this overlap. The exchange is facili-
tated by Cartesian coupling cells, which cover the entire coupling domain. Using
these cells, MaMiCo extracts relevant data (averaged mass and momentum val-
ues from the micro solvers, and the mass flux and boundary conditions from the
macro solvers), and then converts and exchanges this data between the solvers.
These cells, however, need to (at minimum) cover the whole micro solver region.
Hence, MaMiCo needs to be aware of the distribution of the micro region across
processes in a distributed environment, to be able to map the coupling cells to
linked cells of the micro solver. Since the run time of a coupled simulation is typ-
ically dominated by the micro simulation, and since more micro-level data than
5 https://github.com/ls1mardyn/ls1-mardyn
6 https://github.com/HSU-HPC/MaMiCo

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://github.com/ls1mardyn/ls1-mardyn
https://github.com/HSU-HPC/MaMiCo
https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 5

macro-level data needs to be accessed and modified for the coupling, MaMiCo
always runs on the processes of the micro solver and manages communication to
the macro simulation processes from there, for efficiency and performance rea-
sons. This means that if the process distribution on micro side changes, then the
allocation for the MaMiCo coupling cells should also be altered correspondingly.

For (Brownian) noise reduction in the MD region, MaMiCo provides noise
filters and supports parallel independent MD simulations all simulating the same
region, from which the required properties are averaged out and sent to the
macroscopic solver [13]. This approach, known as ensemble averaging or multi-
instance sampling, helps reduce the inherent randomness of particle simulations.
These independent simulations are also subdivided and run in parallel. A sample
coupling setup that MaMiCo supports, relevant to the experiments in this paper,
is shown in fig. 2.

OpenFOAM preCICE MaMiCo ls1 mardyn AutoPas
Continuum Molecular

CFD Coupling MD

preCICE
adapter

preCICE
adapter +
MaMiCo
interface

Interface
via

coupling
cells

Integrated
node-level

kernel

OpenMP-parallel
Particle interactions

Timestepping
Data structures

Autotuning

MPI-parallel
OpenMP-parallel

Static load
balancing

MPI-parallel
Molecular-

continuum coupling
algorithmics
Static load
balancing

MPI-parallel
Partitioned
coupling

General coupling
algorithmics

MPI-parallel
Compressible

Incompressible

Fig. 2. A coupling setup with MaMiCo, showing our typical software stack. The Open-
FOAM + preCICE + MaMiCo coupling and the MaMiCo + ls1 mardyn + AutoPas
coupling have been separately validated [25,9]. New implementations in the current
work are in bold.

3 Methods & Implementation

3.1 MaMiCo: Indexing System and Rectilinear Decompositions

MaMiCo’s coupling strategy relies on the coupling cells as the main data struc-
ture, for interfacing with the underlying simulation libraries and for iterating
over subdomains. These coupling cells form a regular grid over the 3D domain
spanning the global MD volume. In practice, it is often required to iterate over a
subset of coupling cells, spanning a certain volume or satisfying certain criteria.
For example, one may need to iterate over only the region where mass transfer
from CFD to MD occurs. Both scalar and vector indices for cells are desirable:
unsigned scalar indices are better for direct element access in array-based under-
lying data structures, and they enable efficient and optimised iteration. Signed
vector indices allow to find neighbour cells more quickly, they can be converted
more easily and are needed for isolating layers and shells.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


6 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 ...
0 1 2 3 4 5 6 7 8 9 10 11

232221201918171615141312

24 ...

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5

6 7 ...

0 1 2 3 4 50 1 2

543

6 7 8

11109

rank 0 rank 1

rank 2 rank 3

Fig. 3. Load balancing with the indexing
system: different types of coupling cell in-
dices on a 2D Cartesian grid with a gener-
alized non-uniform domain decomposition
with 4 ranks. Blue and red global indices
include and exclude a ghost layer, pink are
the subdomain of rank 2, green and orange
are the MD-to-macro data transfer domain
of MD rank 3 and 1.

To fulfil these criteria, a flexi-
ble and robust indexing type system
was developed for MaMiCo. It op-
erates on sixteen cell index types,
which are instantiated at compile time
using a template meta-programming
based approach for faster execution
times. Each type refers to a subset
of coupling cells with a rectangular
cuboid shape as illustrated in Fig.
3. The types arise from four boolean
traits of each index type that are
relevant for interpretation of indices
and their conversion: locality, halo,
scalarity, and direction. Locality de-
cides if the index is local or global.
Local indices are relative to the sub-
domain of their MPI rank, shown in
green and pink in fig. 3. Global in-
dices are shown in blue and red. The
halo trait decides whether an addi-
tional ghost layer, which is used for
boundary handling and data commu-
nication, should be included (blue) or excluded (red). Scalarity decides whether
the index is scalar (denoted by numbers in the grid) or vector (denoted by com-
ponents at the right side next to the cell grid). The data direction index trait
decides whether the cells contain data to be transferred from the micro to macro
solver (green and orange indices, blue area in Fig. 3), or vice-versa (red area in
Fig. 3). Notable features of the indexing system include compile time type safety
for cell indices, and automatic conversion between the index types.

Furthermore, we extended the indexing system to account for non-regular
rectilinear decompositions of the MD domain, to enable load balancing. Now,
we can define a static breakdown of the 3D domain into subdomains, and this
breakdown is propagated to the MD solver (currently supported by ls1 mardyn)
and is also used by the indexing system to define the coupling cells and index
conversions in each dimension. This extension itself was easily facilitated by the
flexibility of this new indexing system, which itself (in contrast) required a semi-
complete overhaul of all iteration logic in the entire codebase, changing 10,000+
lines of code.

3.2 ls1 mardyn: Static Load Balancing

Although ls1 mardyn already implements diffusive and kd-tree based dynamic
load-balancing [19,20], we require static load balancing as a first step towards
compatibility with MaMiCo. This balancing needs to be able to split the 3D do-
main of particles into subdomains in a way that is predictable and reproducible,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 7

so that the balancing can be propagated to every MD simulation instance within
an ensemble.

This required feature was implemented by adding a new domain decomposi-
tion class to ls1 mardyn that generalises the existing regular domain decompo-
sition, and now the user can specify a specific breakdown of the 3D domain in
the x, y, and z axes. This meets the aforementioned compatibility criteria with
MaMiCo’s multi-instance sampling, and the rectilinear subdomains of arbitrary
dimensions map seamlessly onto the coupling cells of MaMiCo as before, allow-
ing sampling and mass + velocity transfer. We have validated that the state of
the coupled particle system modelled by ls1 mardyn in a load balanced setup
matches the behaviour of a non-balanced regular subdomain decomposition. This
was done for several configurations of one-way coupled setups with a variety of
flow scenarios, including a multi-phase droplet scenario, and the Couette flow
startup [9].

4 Experiment 1: Coupled Multiphase Simulation

4.1 Introduction

Molecular-continuum coupling offers significant utility in multiphase scenarios,
since different phases (such as vapour or liquid phase) can be simulated with
specialised solvers that may then be coupled. This way, we can run particle sim-
ulations in specific areas of interest in a scenario, but then also conserve the
effects of the overall flow field by simulating the surrounding volumes via a less
resource-intensive solver. This resultant complexity reduction can also be con-
sidered as a form of load balancing, which only becomes possible in coupled
simulations. However, the surface where the phase change occurs is often the
most interesting part of these simulations, and hence more than one phase are
often present in the higher-granularity solver’s domain. Here it becomes neces-
sary to have support for load balancing, since density imbalances severely affect
the performance of particle simulations.

4.2 Scenario Description

We adapt the evaporation scenario described in Homes et al. [22]. A cuboid with
vacuum on one end and a Lennard-Jones fluid on the other end are set up, and
the fluid is allowed to evaporate into the vacuum. This leads to a coexistence of
vapour and liquid phases at a fixed temperature [26].

In our coupled setup, we define a similar cuboid, as a domain of size 100 ×
360 × 100 and divide it into two subregions: an initial 100 × 40 × 100 re-
gion filled with liquid acting as the reservoir, simulated using the CFD solver
OpenFOAM, and the remainder (containing the liquid-vapour interface) simu-
lated with ls1 mardyn+AutoPas. Since an OpenFOAM-preCICE coupling [5],
a preCICE-MaMiCo coupling [25], and a MaMiCo-ls1 mardyn coupling [9] al-
ready exist, we are able to couple OpenFOAM and ls1 mardyn+AutoPas using
MaMiCo and preCICE as a combined bridge.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


8 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

Fig. 4. The MD region of the multiphase evaporation scenario. The denser liquid phase
is on the left, and the vapour phase on the right.

The particle region is evenly split into liquid (ρliq ≈ 0.7302) and vapour
(ρvap ≈ 0.0198). The values are chosen to ensure vapour-liquid coexistence at
temperature T = 0.8 [26]).

4.3 Experiment Setup

The MD region, cf. fig. 4, is of dimensions 100 × 320 × 100. It is entirely covered
by coupling cells of size 2.53. We run the experiments on one node of the cluster
HSUper7, containing two sockets with an Intel Xeon Platinum 8360Y processor
per socket with up to 36 cores. We use 32 MPI ranks, in a 2 × 8 × 2 distribution.
The simulation is run for 100 coupling cycles, with 50 MD timesteps per cycle.
We use only one MD instance as part of our multi-instance sampling.

We run two experiments, one with the domain along the y axis divided equally
between the liquid and vapour phases (termed the 4+4 setup) shown in fig. 5a,
and one with all ranks save one simulating the liquid phase (termed the 7+1
setup) shown in fig. 5b. From a simple ratio of the maximum number of coupling
cells in a rank in each phase, we predict a speedup of approximately 60% in the
7+1 case compared to the 4+4 case.

4.4 Results

For the 4+4 case, we achieve a time of 61.11 seconds per coupling cycle. For the
7+1 case, we record 34.18 seconds per coupling cycle, implying a 44% reduction in
runtime from this static load balancing. However this value is far from our initial
estimate of 60%, signifying that there are overheads related to the coupling which
are not yet accounted for, such as insertion/deletion of particles. Checking the
simulation files, we see that each coupling step adds an average overhead of 10
seconds, however this is independent of the rank breakdown of the simulation,
and thus is a constant overhead which skews the ratio of runtimes. However,
the speedup obtained is still significant, and emphasises the importance of load
balancing in multiphase scenarios.
7 https://portal.hpc.hsu-hh.de/documentation/hsuper

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 9

liquid vapour

(a) Setup 4+4

liquid vapour

(b) Setup 7+1

Fig. 5. Diagrams illustrating the rank breakdown of the setups. The configuration is
named according to the number of ranks per phase in the y axis. Green and orange
denote the liquid and vapour phase respectively.

5 Experiment 2: Handling Heterogeneous Architectures

5.1 Introduction

To demonstrate handling truly distributed molecular-continuum simulations with
MaMiCo, Viot et al. in [25] successfully coupled a CFD simulation running on a
local workstation with an MD simulation running on a cluster, communicating
using TCP/IP. With the added support for static load balancing, we can explore
another way of running a coupled simulation on a mix of hardware. This may be
done for various reasons, such as hardware availability, GPU support and offload-
ing, or energy requirements. Load balancing becomes even more important in this
framework, to offset the performance difference between the different hardware.
This allows users to take advantage of hardware-specific optimisations (vectori-
sation support, compiler optimisations, mixed CPU-GPU computing etc.) In this
experiment, we demonstrate this capability by executing a coupled simulation
on two different compute nodes at a time, namely an AMD node and an ARM
node.

5.2 Scenario Description

We adopt a Couette flow scenario for this experiment. This scenario describes
a liquid at homogeneous density trapped between two infinite surfaces with dif-
fering relative velocities. In our case, one of the two surfaces is motionless and
the other slides in the +x direction at a constant velocity. We set up a Couette
flow, with the gap between the surfaces being 150 units. We simulate a 1503

volume with a CFD simulation, inside which we have a 1203 MD region. We
fix the MaMiCo coupling cell size to 53, and we run two MD instances. Ten
coupling cycles are run, each for 100 MD timesteps. We use a simple in-house
Lattice-Boltzmann (LB) solver on the CFD side (running on one rank) and ls1
mardyn+AutoPas on the MD side. The fluid density is ≈ 0.813.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


10 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

We use one AMD EPYC 7763 as our AMD node, with 64 hardware cores, and
one Fujitsu A64FX as our ARM node, with 48 cores. The nodes are connected
via InfiniBand EDR (100Gbit/s).

5.3 Rank Migration Test
Setup We start with a setup where the simulation fully saturates one AMD
node (64 ranks). Then, we migrate ranks one by one onto the ARM node, and
observe the effect that it has on the simulation speed. We divide the domain into
4 × 4 × 4 subdomains along the axes, giving us 63 coupling cells per rank. We
also conduct the experiment in the other direction i.e. by migrating ranks from
a fully saturated ARM node to the AMD node. In this case, since we only have
48 ranks, the domain breakdown is 4 × 4 × 3 along the xyz axes. In both cases,
the experiments are run thrice, and the average value is reported.

From an earlier report utilising ls1 mardyn+AutoPas on the same hard-
ware [18], we expect the simulation to run significantly slower on ARM.

0 20 40 60

Time per Coupling Cycle (in s)

16 AMD, 48 ARM

32 AMD, 32 ARM

40 AMD, 24 ARM

48 AMD, 16 ARM

50 AMD, 14 ARM

60 AMD, 4 ARM

61 AMD, 3 ARM

62 AMD, 2 ARM

63 AMD, 1 ARM

64 AMD

C
or
e
di
st
ri
bu
ti
on

1(a) 64 ranks: AMD → ARM

0 20 40 60 80

Time per Coupling Cycle (in s)

48 AMD

1 ARM, 47 AMD

2 ARM, 46 AMD

8 ARM, 40 AMD

18 ARM, 30 AMD

24 ARM, 24 AMD

38 ARM, 10 AMD

47 ARM, 1 AMD

48 ARM

C
or
e
di
st
ri
bu
ti
on

1(b) 48 ranks: ARM → AMD

Fig. 6. Chosen results (simulation speed) from migration experiments

Results Selected results of the AMD→ARM migration experiment are shown
in fig. 6a, and results of the ARM→AMD migration experiment are shown in
fig. 6b. The performance is severely affected as soon as a single subdomain is
migrated to ARM, and it remains relatively stable afterwards, only worsening
marginally with the migration of more ranks. As more ranks move to ARM, more
subdomains are dependent on their ARM neighbours to finish their computations
each MD timestep, hence the marginal increase in walltime can be explained by
compounding delays due to synchronisation.

Another conclusion drawn from fig. 6b is that communication overhead be-
tween the ARM and AMD node is negligible, since there is an immediate im-
provement from migrating a single rank from ARM to AMD, and no additional
(network-related) walltime increases can be observed.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 11

Since the scenario is of homogeneous density, we can determine the expected
runtime per coupling cell from these results. As each rank has 63 = 216 coupling
cells in the case with 64 ranks, we find that the time per coupling cell per cycle
for AMD tAMD,cell ≈ 0.102 s, and similarly for ARM we have tARM,cell ≈ 0.305
s. We notice that

tARM,cell ≈ 3 × tAMD,cell (1)

Denoting the predicted time per coupling cycle as tpred, we have

tpred = max (tAMD,pred, tARM,pred)
= max (tAMD,cell × nAMD, tARM,cell × nARM)
= max (0.102nAMD, 0.305nARM) (2)

where nAMD, nARM are the maximum number of coupling cells in a rank on
AMD and ARM respectively. We use the value of tpred to perform optimal load
balancing by adjusting the values of n and verify our configurations experimen-
tally. The constants tAMD,cell, tARM,cell account for two MD instances with 100
MD timesteps per instance, and hence are not generalisable beyond this context
unless those factors are accounted for.

As we only use the 64 rank case in future experiments, we omit the calcula-
tions to derive time values for the 48 rank case here.

5.4 Balancing Tests

With the reference values in mind, we set up two load balancing experiments,
using 64 ranks: one where only one rank (and thus only one subdomain) of
the MD simulation resides on ARM and the remaining 63 ranks run on AMD
(termed 63+1 setup), and one where the domain (and therefore the 64 ranks)
are evenly split among the nodes (termed 32+32 setup). The balancing is done
keeping eq. (1) in mind, and only along the x axis for simplicity.

Setup We name our configurations in this section using the number of coupling
cells in the x direction. Since we have 4 ranks across each axis, all configurations
are four comma-separated integers. In figures and diagrams, cells running on
AMD are denoted in thistle, and cells running on ARM are denoted in royal
purple. Thus, the default, evenly distributed configuration for the 32+32 setup
is 6,6,6,6 (6 coupling cells along x-direction for fixed y and z per rank).

For the 63+1 setup, we choose four configurations. The default configuration
is shown in fig. 7a. Firstly, from eq. (1), we allocate nAMD = 3 × nARM with
config. 6,6,9,3. Next, we even out the load on the AMD side with config.
7,7,7,3, illustrated in fig. 7b. Finally, we attempt to create a bottleneck on the
AMD side instead, with config. 7,7,8,2 and config. 8,8,7,1.

Then, for the 32+32 setup, we choose four configurations again, with the
default 6,6,6,6 shown in fig. 7b. Once again, we allocate nAMD = 3 × nARM

with config. 9,9,3,3, and try to create a bottleneck on the AMD side with config.
10,10,2,2, shown in fig. 7d, and also with a config. 11,11,1,1. We include an

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


12 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

tAMD,pred = 22.04 s
tARM,pred = 65.78 s

(a) 63 + 1 default: 6,6,6,6

tAMD,pred = 25.71 s
tARM,pred = 32.89 s

(b) 63 + 1 config: 7,7,7,3

yz
x

       Subdomain on   
       AMD node
       Subdomain on   
       ARM node

tAMD,pred = 22.04 s
tARM,pred = 65.78 s

(c) 32 + 32 default: 6,6,6,6

tAMD,pred = 36.73 s
tARM,pred = 21.93 s

(d) 32 + 32 config: 10,10,2,2

Fig. 7. Diagrams illustrating the rank breakdown of the setups. The configuration is
named counting the allocation of cells along the x axis.

additional config. 8,8,4,4 to illustrate a gradual improvement over the default
setup.

Results In fig. 8a we show the results of the experiments involving the 63+1
setup, and in fig. 8b we show the same for the 32+32 setup. We see that proper
balancing halves the time required per coupling cycle, as the bottleneck created
by the ARM node is somewhat alleviated. For the 63+1 setup, the time per
coupling cycle is reduced from 65.78 s to 29.18 s (≈ 55.6% reduction of runtime)
in the best case, and similarly, in the 32+32 setup we see an improvement from
70.12 s to 34.94 s (≈ 50.2% reduction of runtime).

We see that proper balancing halves the time required per coupling cycle, as
the bottleneck created by the ARM node is somewhat alleviated. For the 63+1
setup, the time per coupling cycle is reduced from 65.78 s to 29.18 s (≈ 55.6%
reduction of runtime) in the best case, and similarly, in the 32+32 setup we see
an improvement from 70.12 s to 34.94 s (≈ 50.2% reduction of runtime).

Metrics reported by ls1 mardyn per simulation show that this improvement
can be attributed in a large part to the reduction of the runtime per coupling
cycle in the force calculation step of the simulation (≈55.07% reduction from
11.214 s to 5.038 s in the 63+1 setup, ≈46.71% reduction from 11.258 s to 6.002
s in the 32+32 setup). A deeper performance analysis may yield further insight.

The experimental results lie within a 5.7% margin of our predictions, with
the notable outlier being the 7,7,8,2 configuration in the 64+1 setup, with a
discrepancy of −11.76%. We can conclude that it is still not ideal to run the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 13

0 10 20 30 40 50 60

Time per Coupling Cycle (in s)

8,8,7,1

7,7,7,3

7,7,8,2

6,6,9,3

6,6,6,6

C
on
fig
ur
at
io
n

Experimental value

Predicted value

1(a) Results: 63 + 1 setup

0 20 40 60

Time per Coupling Cycle (in s)

10,10,2,2

9,9,3,3

11,11,1,1

8,8,4,4

6,6,6,6

C
on
fig
ur
at
io
n

Experimental value

Predicted value

1(b) Results: 32 + 32 setup

Fig. 8. Simulation speed results from load balancing

simulation on mixed hardware without further hardware-specific optimisation,
but proper load balancing successfully reduces the overall runtime.

6 Conclusion

From our experiments, we have verified the importance of load balancing in cou-
pled scenarios. We have implemented a static load balancer for ls1 mardyn, and
have extended MaMiCo to be able to interface with the resultant rectangular
rectilinear grids. We have tested our implementation with both a heterogeneous
phase and heterogeneous hardware setup, both of which are highly relevant to
coupled simulations. The results are favourable, leading to a 44% to 55% reduc-
tion of runtime across the fastest configurations. These results provide ample
motivation for further work in this area.

The first goal for future work should be the automatic selection of an optimal
configuration of static load balancing at the beginning of the simulation. This
could be done with expert knowledge, or from estimates (from previous work, or
from automatic mini-benchmarks). Then MaMiCo should be further extended
to support dynamic load balancing, driven by the MD simulation; it should be
able to adapt to changing subdomain sizes without further interference from the
user. Finally, the balancing support should be extended towards other particle
dynamics solvers, such as LAMMPS or GROMACS.

Acknowledgments. A. Das Sharma and L. Viot acknowledge financial support by
the projects MaST and hpc.bw. Computational resources (HPC cluster HSUper, ARM
Minicluster, AMD Minicluster) have been provided by the project hpc.bw. MaST and
hpc.bw have been funded by dtec.bw – Digitalization and Technology Research Center
of the Bundeswehr; dtec.bw is funded by the European Union – NextGenerationEU.
The authors further acknowledge the provision of computational resources for more
numerical studies at HLRS (project GCS-MDDC). They thank Simon Homes and
Prof. Jadran Vrabec from TU Berlin for their fruitful correspondence and invaluable
support regarding the implementation of the evaporation scenario.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


14 A. Das Sharma, L. Viot, P. Jarmatz, H. Preuß, P. Neumann

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References
1. Berendsen, H., van der Spoel, D., van Drunen, R.: Gromacs: A message-passing

parallel molecular dynamics implementation. Computer Physics Communications
91(1), 43–56 (1995)

2. Besseron, X., Adhav, P., Peters, B.: Parallel multi-physics coupled simulation of
a midrex blast furnace. In: Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region Workshops. p. 87–98. HPCAsia ’24
Workshops, Association for Computing Machinery, New York, NY, USA (2024)

3. Böhme, D., Wolf, F., Geimer, M.: Characterizing load and communication imbal-
ance in large-scale parallel applications. In: 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops & PhD Forum. pp. 2538–2541.
IEEE (2012)

4. Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., Simonis, F., Uekermann,
B., Abrams, G., Bungartz, H., Cheung Yau, L., Desai, I., Eder, K., Hertrich, R.,
Lindner, F., Rusch, A., Sashko, D., Schneider, D., Totounferoush, A., Volland, D.,
Vollmer, P., Koseomur, O.: preCICE v2: A sustainable and user-friendly coupling
library [version 2; peer review: 2 approved]. Open Research Europe 2(51) (2022)

5. Chourdakis, G., Schneider, D., Uekermann, B.: Openfoam-precice: Coupling open-
foam with external solvers for multi-physics simulations. OpenFOAM® Journal 3,
1–25 (Feb 2023)

6. Gratl, F.A., Seckler, S., Tchipev, N., Bungartz, H.J., Neumann, P.: Autopas: Auto-
tuning for particle simulations. In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). pp. 748–757 (2019)

7. Harlacher, D.F., Klimach, H., Roller, S., Siebert, C., Wolf, F.: Dynamic load bal-
ancing for unstructured meshes on space-filling curves. In: 2012 IEEE 26th inter-
national parallel and distributed processing symposium workshops & PhD forum.
pp. 1661–1669. IEEE (2012)

8. Hirschmann, S., Pflüger, D., Glass, C.W.: Towards understanding optimal load-
balancing of heterogeneous short-range molecular dynamics. In: 2016 IEEE 23rd
International Conference on High Performance Computing Workshops (HiPCW).
pp. 130–141 (2016)

9. Jarmatz, P., Wittenberg, H., Jafari, V., Das Sharma, A., Maurer, F., Wittmer,
N., Neumann, P.: MaMiCo 2.0: An enhanced open-source framework for high-
performance molecular-continuum flow simulation. SoftwareX 20, 101251 (Dec
2022)

10. Ko, S.H., Kim, N., Kim, J., Thota, A., Jha, S.: Efficient runtime environment
for coupled multi-physics simulations: Dynamic resource allocation and load-
balancing. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing. pp. 349–358 (2010)

11. Kohring, G.: Dynamic load balancing for parallelized particle simulations on MIMD
computers. Parallel Computing 21(4), 683–693 (1995)

12. Lennard-Jones, J.E.: Cohesion. Proceedings of the Physical Society 43(5), 461
(sep 1931)

13. Neumann, P., Flohr, H., Arora, R., Jarmatz, P., Tchipev, N., Bungartz, H.J.: Ma-
MiCo: Software design for parallel molecular-continuum flow simulations. Com-
puter Physics Communications 200, 324–335 (Mar 2016)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17


Static Load Balancing in Coupled Simulations 15

14. Niemöller, A., Schlottke-Lakemper, M., Meinke, M., Schröder, W.: Dynamic load
balancing for direct-coupled multiphysics simulations. Computers & Fluids 199,
104437 (2020)

15. Niethammer, C., Becker, S., Bernreuther, M., Buchholz, M., Eckhardt, W., Hei-
necke, A., Werth, S., Bungartz, H.J., Glass, C.W., Hasse, H., Vrabec, J., Horsch,
M.: ls1 mardyn: The massively parallel molecular dynamics code for large systems.
Journal of Chemical Theory and Computation 10(10), 4455–4464 (2014)

16. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics 117(1), 1–19 (1995)

17. Pour, N.E., Krupp, V., Klimach, H., Roller, S.: Load balancing for immersed
boundaries in coupled simulations. In: Resch, M.M., Kovalenko, Y., Bez, W., Focht,
E., Kobayashi, H. (eds.) Sustained Simulation Performance 2018 and 2019. pp.
185–201. Springer International Publishing, Cham (2020)

18. Preuß, H., De Nayer, G., Das Sharma, A., Jarmatz, P., Leinen, W.G., Jafari, V.,
Horn, R., Breuer, M., Fink, A., Neumann, P.: hpc.bw benchmark report 2022–2024
(2024)

19. Seckler, S., Gratl, F., Heinen, M., Vrabec, J., Bungartz, H.J., Neumann, P.: Au-
topas in ls1 mardyn: Massively parallel particle simulations with node-level auto-
tuning. Journal of Computational Science 50, 101296 (2021)

20. Seckler, S., Gratl, F., Tchipev, N., Heinen, M., Vrabec, J., Bungartz, H.J., Neu-
mann, P.: Load balancing and auto-tuning for heterogeneous particle systems using
ls1 mardyn. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance
Computing in Science and Engineering ’19. pp. 523–536. Springer International
Publishing, Cham (2021)

21. Seckler, S., Tchipev, N., Bungartz, H.J., Neumann, P.: Load balancing for molec-
ular dynamics simulations on heterogeneous architectures. In: 2016 IEEE 23rd
International Conference on High Performance Computing (HiPC). pp. 101–110
(2016)

22. Simon Homes, Matthias Heinen, J.V., Fischer, J.: Evaporation driven by conduc-
tive heat transport. Molecular Physics 119(15-16), e1836410 (2021)

23. Tchipev, N., Seckler, S., Heinen, M., Vrabec, J., Gratl, F., Horsch, M., Bernreuther,
M., Glass, C.W., Niethammer, C., Hammer, N., Krischok, B., Resch, M., Kran-
zlmüller, D., Hasse, H., Bungartz, H.J., Neumann, P.: Twetris: Twenty trillion-atom
simulation. The International Journal of High Performance Computing Applica-
tions 33(5), 838–854 (2019)

24. Teresco, J.D., Devine, K.D., Flaherty, J.E.: Partitioning and dynamic load bal-
ancing for the numerical solution of partial differential equations. In: Numerical
solution of partial differential equations on parallel computers. pp. 55–88. Springer
(2006)

25. Viot, L., Piel, Y., Neumann, P.: From desktop to supercomputer: Computational
fluid dynamics augmented by molecular dynamics using mamico and precice. In:
Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds.) High Performance Com-
puting. pp. 567–576. Springer Nature Switzerland, Cham (2023)

26. Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H.: Comprehensive study of the vapour–
liquid coexistence of the truncated and shifted lennard–jones fluid including planar
and spherical interface properties. Molecular physics 104(09), 1509–1527 (2006)

27. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Computers in
Physics 12(6), 620–631 (Nov 1998)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_17

https://dx.doi.org/10.1007/978-3-031-97632-2_17
https://dx.doi.org/10.1007/978-3-031-97632-2_17

