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Abstract.  

These days, identifying medical deepfakes is crucial for preventing fraudulent 

activity, to avoid inaccurate diagnoses, as well as to uphold patient confidence. 

The massive increase in the production of realistic synthetic medical images pre-

sents significant challenges for clinical decision-making, highlighting the need 

for effective detection techniques. This proposed method offers a hybrid deep-

fake detection model which incorporates a lightweight Depth-Wise Convolution 

module in a Vision Transformer (DWConv-ViT) and a Fast Fourier Transform 

(FFT) module to improve feature extraction in the deepfake detection process. In 

contrast to conventional models which primarily use either frequency-based anal-

ysis or spatial analysis, our method integrates both feature types to increase re-

silience against malicious attacks. The proposed model was trained and tested 

using two datasets consisting of real knee X-ray images and GAN-generated os-

teoarthritis X-ray images. By utilizing both spatial and frequency-based details, 

our approach improves generalization and robustness against sophisticated deep-

fake approaches. Therefore, this work helps to ensure the reliability and validity 

of medical diagnoses. 

Keywords: Medical Deepfake Detection, Deepfake Detection, Hybrid CNN-

Transformer Model, Vision Transformer, Medical AI, Fast Fourier Transform, 

Depthwise Convolution. 

1 Introduction 

Deepfake is a cutting-edge technology that makes it possible to create realistic med-

ical images, including CT scans, X-rays, MRIs, and more, in addition to creating arti-

ficial human photos, videos and so on [1]. These artificially generated images have 

become crucial for data augmentation [2], which protects patient privacy while allow-

ing AI models to train on a variety of datasets. Furthermore, by producing realistic 

simulations of complicated procedures, medical deepfakes strengthen training in surgi-

cal procedures [3]. Deepfake-based avatars are used in telemedicine to improve 
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personalized and interactive doctor-patient communication, which ultimately makes re-

mote consultations more accessible [4]. Additionally, the primary issue in medical re-

search is the difficulty of collecting or obtaining data on rare diseases. Whereas, deep-

fake has become a lifesaver in this case [5], allowing for the creation of more trustwor-

thy diagnostic models. Medical deepfakes have transformed the medical and healthcare 

sector by strengthening training methodology, diversifying data, ensuring privacy pro-

tection, and enhancing data privacy[6]. 

Despite its importance in the medical sector, medical deepfake carries serious con-

cerns that could endanger patient safety and treatment [7]. Since deepfakes induce ab-

normalities are indistinguishable from real ones, it could mislead doctors and healthcare 

professionals, leading to inappropriate therapies. Therefore, Concerns regarding vari-

ous possible misdiagnoses are raised by the creation of extremely realistic synthetic 

medical images. The threat was illustrated in a real-world scenario by a team of re-

searchers in 2019 [8]. They used 3D conditional GAN to successfully modify CT scans 

of patients by adding or deleting lung cancer indications. This demonstrated that deep-

fake technology can bring false positives or negatives in medical diagnosis, which can 

lead to a life-threatening situation.  

Further, these deepfakes generated medical images and scans can be exploited ma-

liciously to create fake medical records to manipulate the diagnoses or to commit in-

surance fraud, which can result in monetary losses and violations of ethics. In light of 

these risks, it is imperative to create sophisticated techniques for identification of med-

ical deepfakes to prevent artificial images from jeopardizing patient confidence or clin-

ical accuracy. Research in this area must be accelerated in order to preserve the integrity 

of medical diagnostics and decision-making, as medical deepfakes carry similarly seri-

ous consequences to those of media deepfakes in terms of misinformation and fraud 

against identities. Key Focus Areas for Medical Deepfake detection are 

• Maximizing Diagnostic Accuracy  

• Detecting Medical Irregularities  

• Safeguarding Patient Privacy. 

• Improving Performance with Limited Data 

The problem of identifying medical deepfakes is addressed through our study by 

introducing a hybrid deep learning architecture that incorporates ViT-Small [9], Depth-

Wise Convolution (DWConv) [10], and Fast Fourier Transform (FFT) [11]. We demon-

strated this study by training and testing the model with manipulated knee osteoarthritis 

X-rays images. Although all the components of a detection system play an important 

role, starting from preprocessing to detection, the feature extraction part majorly influ-

ences the decision-making process. So, we have exclusively designed a feature extrac-

tion module that performs well on a limited dataset by capturing global, local and spec-

tral features. 

Here, DWConv along with ViT facilitates in capturing both local texture features 

and global anatomical structure with minimal computational load. Additionally, the 

FFT branch is incorporated to investigate the spectral anomalies that are typically in-

troduced by generative models, enhancing robustness against adversarial attacks. Un-

like conventional methods that solely depend on either spectral analysis or frequency 
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analysis, our approach utilizes both frequency and spectral information to classify real 

and deepfake images. Crucially, the majority of medical deepfake detection models that 

have been developed to date require a substantial quantity of training data in order to 

be trained. Our approach, on the other hand, can do better with a smaller dataset. 

2 Related work 

2.1 General Deepfake generation 

The creation of realistic deepfake data is significantly impacted by the advancements 

in Generative Adversarial Networks (GANs)[12], autoencoders[13], NeRFs[14], and 

diffusion models. These models aid in producing deepfake text data, voices, and human 

images (facial and entire body) [15], [16]. To execute face swapping and full body or 

face reenactment, these models are often trained using a large dataset that captures fine 

details of speech, motion, and facial expression [17],[18],[19],[20]. Deepfakes were 

once simple to identify with a human eye, but in the past few years, as computer hard-

ware and software have advanced, it has become increasingly challenging for both peo-

ple and machines to distinguish the difference between the real and the fake. Now it 

has become possible to generate deepfake with a few or one image of the target indi-

vidual [21]. Furthermore, real-time deepfake synthesis, driven by efficient neural net-

works, has broadened its use in live streaming and interactive media. While these ad-

vancements have enhanced creativity in filmmaking, gaming, and virtual communica-

tion, they have also heightened concerns about digital deception, cybercrimes involving 

deepfakes, and declining trust in visual content, underscoring the importance of strin-

gent regulations and advanced detection methods. 

2.2 Medical deepfake generation 

Tools for Generating Medical Deepfakes.   

 

To generate medical deepfake, researchers utilize the most advanced deep learning 

models like GAN, Variational Autoencoders (VAE), diffusion model, transformers and 

so on. Style GAN and CycleGAN are widely used GAN models in medical image ma-

nipulation or generation. GAN-based frameworks like CycleGAN and StyleGAN can 

effortlessly generate or manipulate medical data like MRI, CT, X-ray, mammography, 

and much more since they are capable of learning the features of medical images and 

scans in an unsupervised manner [1]. Similar to GAN models, VAE plays a major role 

in medical image reconstruction and anomaly detection, which makes them useful for 

producing controlled modifications to artificial medical datasets. The most advanced 

deep learning developments like transformers and diffusion models have recently be-

come an excellent substitute, providing high-quality medical image synthesis with re-

duced artifacts and enhanced feature retention [22]. 
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Categories of Medical Deepfakes.  

Medical deepfakes fall under three major categories. First is the generation of an 

entirely new medical image or scan called synthetic medical image generation. Second 

is image-to-image translation, where models like Pix2Pix are utilized to modify the 

existing medical data. When there is very little data available, as in rare diseases cases, 

this is most frequently utilized [23]. The final technique is inpainting based modifica-

tion, in which these manipulations emphasize specific modifications like adding or re-

moving lesions, tumors, or scars. These manipulations are often made possible by at-

tention-based technology, which ensures seamless interaction with the surrounding an-

atomical structures [24]. These realistic synthetic data create issues of disinformation 

in medical diagnosis, underscoring the necessity for careful validation and ethical 

measures to prevent abuse in clinical settings, even though they have promise for med-

ical research and education. 

2.3 Deepfake detection 

Fernandes et al. investigated the application of Neural Ordinary Differential Equa-

tions (Neural-ODEs) for deepfake detection by estimating heart rates, revealing a nota-

ble distinction between authentic and manipulated videos[25]. Although their approach 

utilizes physiological signals, its effectiveness may be impacted by inconsistencies in 

video quality and subject movement, potentially reducing heart rate estimation accu-

racy. In [26] the research introduced a deep learning-based convolutional neural net-

work designed to automatically detect diabetic retinopathy and macular edema in reti-

nal fundus images, demonstrating strong sensitivity and specificity. However, its effec-

tiveness depends on extensively annotated datasets and high-resolution images, which 

may restrict its usability across varied clinical environments. Solaiyappan et al.[1] ex-

amined medical deepfake detection using eight machine learning models, demonstrat-

ing high accuracy in detecting manipulated CT scans. However, their dependence on 

pre-trained models and feature extraction may restrict adaptability to emerging manip-

ulation techniques. 

In [27] the author examines the effectiveness of different YOLO models in identify-

ing medical deepfakes within Knee Osteoarthritis X-rays and lung CT scans. The re-

sults indicate promising performance, though variations exist across datasets. While the 

study underscores the potential of YOLO models, inconsistencies in detection accuracy 

highlight the need for further refinement. In [28] the study investigates deep learning 

models, such as CNNs and patch-based networks, for identifying deepfake medical im-

ages, focusing on skin cancer images generated via stable diffusion. The findings 

demonstrate the models' effectiveness in differentiating real and synthetic images, with 

histogram analysis uncovering significant color distribution shifts. However, chal-

lenges remain in establishing a consistent classification threshold, and the models ex-

hibit limitations in generalizing across datasets. 
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3 Methodology 

The proposed DWConv-ViT + FFT architecture ensures enhanced medical deepfake 

detection by capturing both local and global features through integrating depth-wise 

convolution module in vision transformer. The DWConv is integrated with vision trans-

former in a plug and play concept, without modifying any of the internal components 

of the transformer, including MHSA and FFN as shown in Fig. 3 with minimal compu-

tational load. Additionally, as GAN synthesized images suffer from spectral artifacts, a 

lightweight FFT module is incorporated in the detection network. The fusion of spatial 

and spectral characteristics guarantees excellent accuracy while preserving computa-

tional economy, making it lightweight, flexible, and ideal for clinical applications. 

 

 

 

Fig. 1. Proposed Hybrid DWConv-ViT + FFT flowchart 

3.1 Preprocessing 

It is important to maintain the anatomical consistency of the medical image to ensure 

high-quality detection. By standardizing knee X-ray images via the preprocessing 

workflow, it is made possible. To avoid the distortion and to maintain the original as-

pect of the X-ray image, it was compressed to 256×256 pixels with padding. To account 

for real-time variation between different X-ray scanners, values of pixel intensity are 

standardized within a range of [0,1]. Even while performing augmentation, excessive 

rotation and flipping are avoided, as this could produce inaccurate and misleading med-

ical data for the model's training. To bridge the gap between natural images and gray-

scale X-rays, the input X-rays are converted into pseudo-RGB images and undergo his-

togram matching to normalize their intensity distribution. In Section 4.1, preprocessing 

procedures were described in depth. Fig.1 illustrates the workflow of the proposed Hy-

brid DWConv-ViT + FFT model. 
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3.2 Feature Extraction in DWConv-ViT Variant 

The DWConv-ViT model enhances feature extraction by utilizing a pretrained Vi-

sion Transformer (DINOv2 ViT-S/14)1, which is specifically adapted to handle the 

unique characteristics of medical images. To retain the characteristic of the vision trans-

former, the first seven transformer layers are frozen, allowing the remaining layers to 

be fine-tuned for capturing domain-specific details in medical images, including bone 

textures and subtle anatomical structures. 

 

 

Fig. 2.  Feature extraction using different variants of DWConv-VIT  

 

Fig. 3. Architecture of the Vision transformer used DWConv-VIT model 

 

                                                           
1 https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth 
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 DWConv-ViT improves vision transformers by incorporating depth-wise convolutions 

(DWConv), which enhance local spatial feature extraction while preserving the global 

contextual modeling of transformers. In the base variant, each transformer block is 

paired with a DWConv module, where 1D patch tokens are temporarily reshaped into 

2D feature maps. These maps undergo 3×3 depth-wise convolution, batch normaliza-

tion, and GELU activation before reintegrating with the transformer’s global self-atten-

tion output. This mechanism ensures the model captures fine-grained textures like bone 

structures and synthetic noise, which standard self-attention may overlook. In addition 

to the base variant, three optimized variants shown in Fig. 2 refine this approach: 

1. Base Variant: Each transformer block is individually paired with a DWConv 

module. 

 

2. 2-Block Bypass: A single DWConv module serves two transformer blocks, 

striking a balance between parameter efficiency and sensitivity to intricate 

medical features. 

3. 4-Block Bypass: One DWConv module spans four blocks, maximizing com-

putational efficiency while maintaining spatial awareness, making it suitable 

for edge deployment. 

4. Parallel Multi-Kernel: Multiple DWConv branches with different kernel sizes 

(e.g., 3×3 and 5×5) operate simultaneously, improving detection of both 

small-scale GAN artifacts and larger anatomical distortions.  

All variants maintain the transformer’s multi-head self-attention (MHSA) and feed-

forward network (FFN) layers, ensuring seamless compatibility with pretrained weights 

and minimal computational overhead. In bypass variants, the shared DWConv module 

acts as a persistent local memory, mitigating the tendency of deep transformers to lose 

fine-grained details. This hybrid approach enhances global anatomical coherence while 

effectively detecting local synthetic artifacts, making it particularly effective for medi-

cal deepfake detection. 

3.3 Feature Extraction Using Fast Fourier Transform (FFT) 

The FFT-based extraction module processes medical images in the frequency do-

main, uncovering synthetic artifacts that might be imperceptible in spatial analysis. Ap-

plying a 2D FFT to an input X-ray produces a magnitude spectrum that highlights high-

frequency patterns linked to generative models (e.g., GANs, diffusion models), such as 

repetitive edges, grid-like distortions, and irregular texture harmonics. This transfor-

mation shifts the image into its frequency representation, recenters the zero-frequency 

component, and employs logarithmic scaling to amplify subtle anomalies. 

The FFT module strengthens medical deepfake detection by identifying high-fre-

quency artifacts that spatial analysis may overlook. The process starts with applying a 

2D Fast Fourier Transform (FFT) to the grayscale X-ray image, followed by generating 

a log-scaled magnitude spectrum to highlight subtle inconsistencies in the frequency 

domain. A lightweight convolutional neural network (CNN) then extracts spectral 
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features, incorporating batch normalization, GELU activation, and adaptive pooling for 

effective dimensionality reduction. These spectral features are then fused with spatial 

representations from the Vision Transformer with Depth-Wise Convolution (DWConv-

ViT) through a dense transformation layer, ensuring a comprehensive and robust anal-

ysis. 

3.4 Feature Fusion and classification 

The fusion and classification stages combine spatial (DWConv-ViT) and spectral 

(FFT) features through cross-domain attention, dynamically balancing their influence 

based on input properties. Spatial features that capture anatomical consistency are re-

fined by spectral features that highlight synthetic artifacts, enhancing the model’s focus 

on medically significant patterns. The fused representation is processed through a com-

pact dense network with Mish activations and strong regularization to minimize noise 

while retaining subtle synthetic markers. Focal loss emphasizes difficult cases, while 

weight normalization ensures stable training on limited data. The final sigmoid layer 

produces calibrated probabilities, boosting AUC-ROC and reducing false positives for 

dependable medical application. 

3.5 Loss Function 

The proposed loss function combines multiple elements to improve deepfake detec-

tion by tackling class imbalance, challenging samples, and overly confident predictions. 

At its core, it utilizes Binary Cross-Entropy (BCE) loss from Eq. (1): 

ℒBCE=−[y log (p) + (1−y) log (1−p)] (1) 

where y denotes the actual class (real or synthetic) and p represents the predicted 

probability. To emphasize hard-to-classify cases, Focal Loss in Eq. (2) extends BCE 

with a modulation factor (1-pt)𝛾, giving more importance to misclassified instances: 

ℒFocal=-𝛼t(1-pt)𝛾 log (𝑝𝑡) (2) 

      where γ regulates this effect. To balance real-class distributions, KL-Grade 

Weighting assigns a weighted factor 𝛼 𝐾𝐿
𝑅𝑒𝑎𝑙 

in Eq. (3) to real samples based on their 

frequency: 

𝛼 𝐾𝐿
𝑅𝑒𝑎𝑙

= 𝛼Real X (𝑁total/(𝑁KL-grade)) (3) 

Where 𝑁KL-grade denotes the sample count for a specific severity level. Additionally, 

Label Smoothing in Eq. (4) prevents the model from making excessively confident pre-

dictions by adjusting the target labels: 

𝑦 smooth = 𝑦 X (1-𝜖) + 
𝜖

2
 (4) 

where ϵ defines the smoothing intensity. The final loss function integrates these com-

ponents into a unified formulation in Eq. (5): 
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ℒ = 
1

𝑁
∑ 𝛼𝑛

𝑖=1
(𝑖)
𝑡

(1-p
(𝑖)
𝑡

) 𝛾. ℒBCE (𝑦𝑠𝑚𝑜𝑜𝑡ℎ
(𝑖)

,  p(i)) (5) 

allowing the model to effectively learn from both real and synthetic data while min-

imizing bias and enhancing generalization. 

 

4 Experimental Result 

4.1 Dataset 

The process of constructing a clinically meaningful and artifact-rich osteoarthritis 

(OA) X-ray dataset starts by collecting 9,786 authentic knee X-rays from Chen’s da-

taset[29]. All KL grades are treated uniformly and labeled as “real” to focus solely on 

image authenticity. A matching set of 9,786 synthetic X-rays is then randomly drawn 

from a pool of 320,000 GAN-generated images by Prezja et als [3], resized to 256×256 

pixels, normalized, and labeled as “fake”. To introduce controlled visual distortions, 

30% (2,936) of these synthetic images are modified with artifacts such as grid patterns 

(simulating GAN upsampling flaws), Fourier-based high-frequency noise (to mimic 

spectral irregularities), and Gaussian blur patches over joints (replicating copy-paste 

errors). Augmentation strategies differ by image type. Real images undergo transfor-

mations like elastic warping, KL progression simulation, and realistic noise; synthetic 

ones are further modified with channel dropout, overlayed DICOM tags, and the artifact 

injections mentioned earlier.  

To enhance variability in synthetic data, StyleGAN3 is trained on 50,000 OAI X-

rays 2 to generate 4,893 new synthetic samples. These can be blended with either the 

original or artifact-injected Prezja images to reduce reliance on a single GAN source. 

Hybrid images are then synthesized by embedding 64×64 synthetic patches (e.g., knee 

joints) into real X-rays using seamless blending through imgaug, with the results still 

marked as fake. A stratified train/validation/test split is performed: real samples are 

grouped by KL grade, and synthetic samples by type (original, artifact-injected, or 

StyleGAN3-based). The dataset is divided into 6,850 real and 6,850 synthetic images 

for training, 1,468 of each for validation, and 1,468 of each for testing. An extra 500 

synthetic images from an unseen diffusion-based model are appended to the test set to 

test generalization. This pipeline ensures a dataset rich in artifact variety, realistic hy-

brid cases, balanced class distributions, and resilience to novel synthetic image types. 

4.2 Analysis 

A comparison of the model variants with other models in table 1 highlights the 2-

Block Bypass as the top performer, achieving the highest accuracy (91.5%), AUC-ROC 

(92.0%), and synthetic recall (92.5%), along with a low false positive rate (1.8%) and 

fast inference time (24 ms). The Base Model delivers stable results but falls short in 

both recall and accuracy. In contrast, the 4-Block Bypass records the lowest metrics for 

                                                           
2 https://nda.nih.gov/oai 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_16

https://dx.doi.org/10.1007/978-3-031-97632-2_16
https://dx.doi.org/10.1007/978-3-031-97632-2_16


accuracy (84.0%) and recall (83%), though it benefits from the quickest inference 

speed. The Parallel Multi-Kernel variant presents a solid compromise, offering com-

petitive AUC and recall performance, albeit with a slightly slower processing time. The 

2-Block Bypass is the most effective in balancing performance, detection reliability, 

and speed. 

 

 

Table 1. Comparison of Variants on X-Ray Dataset with different models 

Variant Acc AUC-ROC Synthetic 

Recall 

FP Rate 

(Real) 

Infer-

ence Speed 

Base Model 88% 89% 86% 2.5% 28 ms 

2-Block By-

pass 

91.5% 92.0% 92.5% 1.8% 24 ms 

4-Block By-

pass 

84.0% 87.0% 83% 3.2% 20 ms 

Parallel 

Multi-Ker-

nel 

89.5% 91.5% 89% 2.3% 29 ms 

VGG19  82%  84%  78%  6.5%  35 ms 

InceptionV2 85%  86%  81%  5.0%  30 ms 

Table 2. Confusion Matrices for Different Model Variants (Balanced Test Set, N = 19,572) 

Model 

Variant 

TN 

(Real 

De-

tected) 

FP 

(Real as 

Fake) 

FN 

(Fake as 

Real) 

TP 

(Fake 

De-

tected) 

FP 

Rate (%) 

Syn-

thetic 

Recall 

(%) 

Base 

Model 
9,541 245 1,370 8,416 2.5% 86% 

2-Block 

Bypass 
9,610 176 734 9,052 1.8% 92.5% 

4-Block 

Bypass 
9,473 313 1,664 8,122 3.2% 83% 

Parallel 

Multi-

Kernel 

9,561 225 1,076 8,710 2.3% 89% 

 

As shown in Table 2 and the confusion matrices in Figure 4, the 2-Block Bypass model 

outperforms the others, delivering the highest synthetic recall of 92.5% and the lowest 

false positive rate of 1.8%, highlighting its strong suitability for clinical applications. 

In contrast, the 4-Block Bypass emphasizes speed but compromises on accuracy, evi-

denced by a much higher number of false negatives (1,664) and a lower recall rate of 

83%. While the Parallel Multi-Kernel model improves artifact detection with an 89% 

recall, it introduces greater computational demands. Overall, the 2-Block Bypass offers 
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the most effective trade-off between performance and efficiency, making it the pre-

ferred option for detecting medical deepfakes. 

Table 3. Ablation Configurations 

Model Variant AUC-ROC Synthetic Recall FP Rate(Real) Grade4    

Recall 

Base ViT 84.2% 79% 5.1% 72% 

 

ViT+DWConv 

88.5% 85% 3.5% 80% 

 

ViT + FFT 

86.1% 82% 4.2% 75% 

DWConv-ViT 

+ FFT (2 block 

bypass) 

92.0% 92.5% 1.8% 89% 

 

Table 3 illustrates that the combination of Depthwise Convolution and Fast Fourier 

Transform markedly enhances the effectiveness of deepfake detection in medical im-

aging. While DWConv targets localized texture irregularities, FFT focuses on high-

frequency signal anomalies. Together, they boost synthetic recall by 13.5% (rising from 

79% to 92.5%) and improve AUC-ROC by 7.8% (from 84.2% to 92.0%) over the base 

ViT model. Additionally, incorporating KL-grade weighting significantly improves 

performance, raising Grade 4 recall by 17% (from 72% to 89%), thus supporting con-

sistent detection across various osteoarthritis grades. With an excellent trade-off be-

tween precision (92.0% AUC-ROC) and a low false positive rate (1.8%), the DWConv-

ViT + FFT model stands out as the most reliable option for clinical deployment 

      

                  

 

Fig. 4. Confusion Matrix: a) 2-Block bypass model and b) Parallel Multi-Kernel 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_16

https://dx.doi.org/10.1007/978-3-031-97632-2_16
https://dx.doi.org/10.1007/978-3-031-97632-2_16


5 Conclusion and Future Directions 

The proposed DWConv-ViT+FFT-based deepfake detection model demonstrates 

outstanding performance in identifying medical deepfakes, owing to its ability to ex-

tract both spectral and spatial features. It effectively uncovers subtle inconsistencies 

that conventional methods often miss, thereby strengthening defenses against malicious 

manipulations. This research presents a robust hybrid deep learning architecture—

DWConv-ViT combined with FFT, specifically tailored to detect synthetic osteoarthri-

tis X-ray images, addressing the rising threat of medical image forgery. The model lev-

erages depthwise convolutions and vision transformers to capture intricate texture pat-

terns along with larger anatomical structures. Incorporating the Fast Fourier Transform 

(FFT) module further refines its sensitivity to frequency-domain artifacts commonly 

introduced by GAN-based generation techniques. Among various configurations eval-

uated, the 2-Block Bypass variant emerged as the most effective. This approach holds 

promise for broader application in detecting deepfakes across diverse medical imaging 

formats, including CT and MRI, where adversarial anomalies may differ. Additionally, 

integrating this model with explainable AI tools in real-time clinical environments 

could boost interpretability and foster greater trust in AI-assisted diagnostics. 
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