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Abstract. In this paper, we consider the numerical simulation of gas
storage in geological formation in the context of hydrogen underground
storage and carbon dioxide geological sequestration. We constructs two
energy-stable numerical schemes: one based on the energy factoriza-
tion approach, which rigorously preserves the energy dissipation prin-
ciple and combines discontinuous Galerkin approximations with mixed
finite elements for spatial discretization; the other based on a stabiliza-
tion approach, which conserves the original energy functional, has an
adaptive stabilization parameter and time-stepping strategy, and ensures
the boundedness of molar density. Through numerical experiments with
methane gas, our schemes are validated in terms of capturing coupled
hydro-mechanical processes, handling strong nonlinearities, and main-
taining conservation properties.

Keywords: Efficiency of numerical schemes · Gas storage in geological
Formation · Temporal discretization · Long-time accurate simulation
· Spatial discretization · Robustness.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_15

https://dx.doi.org/10.1007/978-3-031-97632-2_15
https://dx.doi.org/10.1007/978-3-031-97632-2_15


2 Huangxin Chen et al.

1 Introduction

Geological sequestration of carbon dioxide and underground storage of hydro-
gen are two critical applications of geological storage technologies, with pro-
found implications for global energy utilization and environmental protection
[5, 10]. Numerical simulation plays a pivotal role in geological storage research,
but its accuracy and stability are influenced by various factors. For instance,
higher-order numerical algorithms are required to improve computational preci-
sion while ensuring local mass conservation and avoiding numerical dispersion
and non-physical oscillations. Additionally, large time-step calculations must bal-
ance computational efficiency with stability and reliability. Furthermore, when
simulating multiphase flow in geological environments, the phase behavior of
fluids is particularly critical, especially the impact of temperature, pressure, and
salt concentration on interfacial tension, which further complicates the simula-
tion [15, 17].

This study focuses on the numerical simulation of single-phase gas flow with
compressible gas and rock in the context of hydrogen underground storage and
carbon dioxide geological sequestration, exploring the construction of governing
equations, numerical challenges, and corresponding strategies. The numerical
implementation of our physical model must strictly adhere to thermodynamic
consistency, as methods violating this principle can lead to unphysical or unsta-
ble simulation results [5, 11]. Various approaches have been developed to handle
Helmholtz free energy in numerical schemes. The convex splitting method [9]
has been widely used for both single- and multi-component systems, providing
nonlinear energy-stable schemes. However, it requires solving nonlinear equa-
tions, often at high computational cost. Alternative strategies include stabiliza-
tion methods [19], exponential time-differencing [7], and the Invariant Energy
Quadratization (IEQ) [21] and Scalar Auxiliary Variable (SAV) approaches [18].
While the IEQ and SAV methods yield linear, easily implementable energy-stable
schemes, their modified energy functionals deviate from the original. The En-
ergy Factorization (EF) method [12, 13] provides an alternative approach that
maintains the original energy dissipation structure while offering computational
efficiency. The stabilization method proposed by [14] integrates features from
existing approaches, preserving the original energy functional and enabling lin-
ear energy-stable formulations. Maintaining the physical bounds of molar den-
sity 0 < c < 1

β is critical in simulating compressible gas flow through porous
media. Deviations from these bounds yield non-physical solutions, necessitat-
ing numerical schemes that intrinsically enforce these constraints. Recent ad-
vances in bounding techniques include the constraint enforcement methods such
as Lagrange multiplier approaches [2] and variational formulations [8], a poste-
riori corrections such as post-processing [22] and cut-off strategies [20], and the
energy-based methods such as nonlinear convex splitting [1, 6].

The paper is organized as follows. In section 2, we introduce the formulation
of gas flow model with rock compressibility. In section 3, we introduce two energy-
stable numerical schemes and discuss the properties they satisfy. In section 4,
numerical results are presented to verify the features of the proposed scheme.
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2 Mathematical Model of Gas Flow In Poroelastic Media

For the convenience of presentation, we focus on single-phase gas flow with com-
pressible gas and rock. We consider a fully coupled thermodynamic mathematical
model for single-phase gas flow in porous media, incorporating the compressibil-
ity of both gas and rock.

∇ · σ(us, p) = 0, in Ωt =: Ω × (0, t), (1a)
∂(ϕc)

∂t
+∇ · (ufc) = 0, in Ωt, (1b)

uf = −λ(ϕ)c∇µ, in Ωt, (1c)
p = cµ(c)− f(c), in Ωt, (1d)
∂ϕ

∂t
=

1

N

∂p

∂t
+ α∇ · vs, in Ωt, (1e)

where λ(ϕ) = κ(ϕ)
ν is the mobility, ν is the viscosity of gas, κ(ϕ) = κ0(

ϕ
ϕr

)3( 1−ϕr

ϕ )2

is the permeability, κ0 is the initial intrinsic permeability and ϕr is the porosity
at the reference pressure. σ(us, p) = 2ηε(us) + γ div(us)I − αpI is the stress
tensor, ε(us) =

1
2 (∇us + ∇uT

s ) is the strain tensor, I is the unit tensor, us is
the displacement of solid, vs = ∂us

∂t is the velocity of solid, η and γ are the
Lamé parameters, α is the Biots coefficient, N is the Biot’s modulus, c is the
molar density of gas. The Helmholtz free energy density f(c) and chemical po-
tential µ determined by the Peng-Robinson equation of state have the following
expression

f(c) = fide(c) + frep(c) + fatt(c), (2a)
fide (c) = cRT ln(c), frep (c) = −cRT ln(1− βc), (2b)

fatt(c) =
b(T )c

2
√
2β

ln

(
1 + (1−

√
2)βc

1 + (1 +
√
2)βc

)
, (2c)

µ(c) = f ′(c). (2d)

The pressure is given by the volumetric EoS: p = cRT
1−βc − bc2

1+2βc−β2c2 . In order
to close the system, the following boundary conditions are imposed

σ(us, p) · n = 0, on ∂Ω, (3)
uf · n = 0, on ∂Ω. (4)

The total free energy of (1) and (3) in Ω can be defined as

E(t) =

∫
Ω

(
ϕf(c) +

1

2
σe(us) : ε(us) +

1

2N
p2
)
dx. (5)

3 Two Energy-Stable Numerical Schemes

For thermodynamically consistent models of gas flow in porous media, it is essen-
tial to construct numerical schemes that strictly adhere to the energy dissipation
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law, thereby improving computational stability and efficiency. This section in-
troduces two energy-stable numerical schemes based on an improved energy fac-
torization method and a stabilization strategy, respectively, to guarantee energy
stability in numerical computations and optimize computational efficiency.

3.1 Energy-Stable Scheme Based on Energy Factorization Approach

The first numerical approach utilizes an energy factorization method for treat-
ing the Helmholtz free energy density while implementing a semi-implicit time-
stepping formulation. This method rigorously preserves the energy dissipation
principle by precisely computing the pressure field through chemical potential
and Helmholtz free energy. The spatial discretization framework combines dis-
continuous Galerkin approximations [16] with mixed finite elements, incorporat-
ing upwind flux treatment to maintain both mass conservation properties and
numerical stability.

The time semi-discretized chemical potential µn+1 is derived through a ther-
modynamically consistent energy factorization methodology [13], framework for
constructing energy-stable semi-discrete chemical potentials by leveraging the
convexity and concavity properties of different components of the free energy
function. we get the linearized semi-discretized chemical potential

µn+1 = µir

(
cn+1, cn

)
+ µatt

(
cn+1, cn

)
where

µir

(
cn+1, cn

)
= RT (ln (cn)− ln (1− βcn)) +RTcn+1

(
1

cn
+

β

1− βcn

)
, (6a)

µatt

(
cn+1, cn

)
=

b

2
√
2β

(
ln
(
1 + (1−

√
2)βcn

)
+

(1−
√
2)βcn+1

1 + (1−
√
2)βcn

)
(6b)

− b

2
√
2β

(
ln
(
1 + (1 +

√
2)βcn

)
+

(1 +
√
2)βcn

1 + (1 +
√
2)βcn

)
.

Building upon the semi-discrete formulation of the chemical potential derived
above, we rigorously establish the following free energy dissipation inequality
that governs the thermodynamic consistency of the numerical scheme:

fide
(
cn+1

)
+ frep

(
cn+1

)
− fide (c

n)− frep (c
n) (7)

≤ µir
(
cn+1, cn

) (
cn+1 − cn

)
,

fatt
(
cn+1

)
− fatt (c

n) ≤ µatt

(
cn+1, cn

) (
cn+1 − cn

)
. (8)

By systematically integrating the discrete chemical potential formulation derived
through energy factorization method [13] with a semi-implicit Euler temporal
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discretization framework, we rigorously construct the following energy-stable
semi-discrete system:

−∇ · σ(un+1
s , pn+1) = 0, (9a)

Dτ (ϕ
n+1cn+1) +∇ · (un+1

f cn) = 0, (9b)

un+1
f = −λ(ϕn)cn∇µn+1, (9c)

pn+1 = cnµn+1 − f(cn), (9d)

Dτϕ
n+1 =

1

N
Dτp

n+1 + α∇ ·Dτu
n+1
s . (9e)

We employ a temporally uniform discretization parameter defined as τ = tn+1−
tn, where Bn represents the discrete approximation of molar density at tempo-
ral node tn The backward difference operator is systematically defined for all
primary variables B ∈ {us, ϕ, p, c, E} through the discrete temporal derivative:

DτB
n+1 :=

Bn+1 −Bn

τ
.

The energy dissipation property of system (9a), rigorously proven in Theorem
3.2 of [4].

Theorem 1. ([4]) Let σ(un+1
s , pn+1) · n = 0,un+1

f · n = 0 on the boundary
∂Ω, where n denotes the normal unit outward vector to ∂Ω. We assume that
0 < cn < ϱ

β , n ≥ 0. Then the scheme (9) follows an energy dissipation law as

DτE
n+1 ≤ 0,

where

En+1 =

∫
Ω

(
ϕn+1f(cn+1) +

1

2
σe(u

n+1
s ) : ε(un+1

s ) +
1

2N
|pn+1|2

)
dx

is the semidiscrete total energy at the time tn+1.

Let Kh be a family of nondegenerate, quasi-uniform partitions of Ω composed of
triangles or quadrilaterals if d = 2, or tetrahedra, prisms, or hexahedra if d = 3.
Define Eh as the set of all faces (d = 3) or edges (d = 2) of Kh, and let hT be
the diameter of any element K ∈ Kh. The set of interior edges or faces in Eh is
denoted by EI

h. The standard finite element space of d-dimensional vector fields,
whose components are piecewise linear polynomials, is given by:

Vh :=
{
ψ ∈ [L2(Ω)]d : ψ|K ∈ Pd

1(K), ∀K ∈ Kh

}
.

We now define the average and jump operators for ψ ∈ V. Given two neigh-
boring elements Ki,Kj ∈ Kh and an interface e = ∂Ki∩∂Kj ∈ EI

h with outward
unit normal vector ne exterior to Ki, we define:

{ψ} :=
1

2
((ψ|Ki)|e + (ψ|Kj )|e), [ψ] :=

(
ψ|Ki

)∣∣
e
−
(
ψ|Kj

)
|e,
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here, ψ|Ki
represents the value of ψ in Ki.

The inner product on an edge or face e is given by ⟨·, ·⟩e, the associated norms
are denoted by ∥ · ∥L2(e). Next, we introduce the lowest-order Raviart-Thomas
(RT0) mixed finite element space, which will be used in the spatial discretization.
On a simplicial mesh, the space RT0 is defined as: RT0 = [P0]

d + xP0, where
P0 represents the space of piecewise constant functions. We define the following
finite element spaces:

Uh = {v ∈ H(div, Ω) : v|K ∈ RT0(K), ∀K ∈ Kh} ,
Qh =

{
q ∈ L2(Ω) : q|K ∈ P0(K), ∀K ∈ Kh

}
,

where H(div, Ω) is defined as: H(div, Ω) =
{
v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)

}
.

Additionally, we define the space with homogeneous normal boundary con-
ditions:

U0
h = {v ∈ Uh : v · n = 0 on ∂Ω} .

Next, we develop a fully discrete numerical scheme using the mixed finite el-
ement method with upwind scheme that strictly maintains both energy stability
and mass conservation. The scheme combines an upwind treatment of advec-
tion terms with a carefully balanced implicit-explicit temporal discretization,
ensuring robust performance.

For any vh ∈ Vh, wh ∈ U0
h, qh, zh, φh ∈ Qh, we determine un+1

s,h ∈ Vh,
un+1
f,h ∈ Uh, cn+1

h , ϕn+1
h , pn+1

h ∈ Qh such that:

A(un+1
s,h , pn+1

h ,vh) = 0, (10a)

(Dτ (ϕ
n+1
h cn+1

h ), qh) +
∑
e∈EI

h

⟨cn∗h un+1
f,h · n, [qh]⟩e = 0, (10b)

(λ−1(ϕnh)u
n+1
f,h ,wh) =

∑
e∈EI

h

⟨[µn+1
h ], cn∗h wh · n⟩e, (10c)

(pn+1
h , zh) = (cnhµ

n+1
h − f(cnh), zh), (10d)

(Dτϕ
n+1
h , φh) =

1

N
(Dτp

n+1
h , φh) + α(Dτ (∇ · un+1

s,h ), φh) (10e)

− α
∑
e∈EI

h

⟨{φhne}, [Dτu
n+1
s,h ]⟩e.

The bilinear form A is defined as:

A(us,h, ph,vh) :=
∑

K∈Kh

(σe(us,h), ε(vh))K −
∑
e∈EI

h

⟨{σe(us,h)ne}, [vh]⟩e (11)

− α
∑

K∈Kh

(ph,∇ · v)K + α
∑
e∈EI

h

⟨{phne}, [vh]⟩e

−
∑
e∈EI

h

⟨[us,h], {σe(vh)ne}⟩e +
∑
e∈EI

h

ς2
he

⟨[us,h], [vh]⟩e.
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Here, ς2 is a penalty parameter and he = |e|
1

d−1 .
To handle rock compressibility, the scheme (10) forms a nonlinear system,

which we solve iteratively. Given cnh, un
s,h, un

f,h, ϕnh, and pnh, we initialize:

cn+1,0
h = cnh, un+1,0

s,h = un
s,h, un+1,0

f,h = un
f,h,

ϕn+1,0
h = ϕnh, pn+1,0

h = pnh.

For l ≥ 0, we solve the linear system:

A(un+1,l+1
s,h , pn+1,l+1

h ,vh) = 0,

(Dτ(ϕn+1,l
h cn+1,l+1

h ), qh) +
∑
e∈EI

h

⟨cn∗h un+1,l+1
f,h · n, [qh]⟩e = 0,

(λ−1(ϕnh)u
n+1,l+1
f,h ,wh) =

∑
e∈EI

h

⟨[µn+1,l+1
h ], cn∗h wh · n⟩e,

(pn+1,l+1
h , zh) = (cnhµ

n+1,l+1
h − f(cnh), zh),

(Dτϕ
n+1,l+1
h , φh) =

1

N
(Dτp

n+1,l+1
h , φh) + α(Dτ (∇ · un+1,l+1

s,h ), φh)

− α
∑
e∈EI

h

⟨{φhne}, [Dτu
n+1,l+1
s,h ]⟩e.

Theorem 2. ([4]) Let σ(un+1
s,h , pn+1

h ) · n = 0,un+1
f,h · n = 0 on the boundary

∂Ω, where n denotes the normal unit outward vector to ∂Ω. We assume that
0 < cnh <

ϱ
β , n ≥ 0. Then the scheme (10) follows an energy dissipation law as

DτE
n+1
h ≤ −

∑
K∈Kh

∫
K

λ−1(ϕnh)|un+1
f,h |2 dx ≤ 0.

3.2 Stabilization-Based Energy-Stable Scheme Approach

The second numerical formulation implements a stabilization methodology that
rigorously conserves the original energy functional while establishing provably
stable linear discretizations. During each temporal iteration, the stabilization
parameter undergoes adaptive modification through an explicit closed-form re-
lation, ensuring strict adherence to fundamental energy dissipation principles.
To optimize computational performance, the algorithm incorporates an adaptive
temporal discretization framework that strategically allocates computational re-
sources while maintaining solution accuracy and boundedness. The time step size
explicitly derived from local solution characteristics at each linear iteration. Spa-
tial discretization is achieved through a mixed finite element formulation with
consistent upwind flux approximation, ensuring discrete stability while exactly
preserving mass conservation properties.
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The discrete chemical potential incorporates a dynamically adjusted stabi-

lization term µn+1 = µ(cn)+θnRT
cn+1 − cn

cn(1− βcn)2︸ ︷︷ ︸
ζn+1

, where ζn+1 represents the sta-

bilization term, θn is the stabilization parameter. By the Taylor expansion and
assuming that ξ is a number between cn and cn+1, we have f

(
cn+1

)
− f (cn) =

µ (cn)
(
cn+1 − cn

)
+ f ′′(ξ)

2

(
cn+1 − cn

)2. In view of the above stabilized chemical
potential, we further obtain

f
(
cn+1

)
− f (cn) = µn+1

(
cn+1 − cn

)
(12)

+

(
f ′′(ξ)

2
− θnRT

cn (1− βcn)
2

)(
cn+1 − cn

)2
.

By choosing a suitable stabilization parameter θn, we can obtain the following
inequality.

f
(
cn+1

)
− f (cn) ≤ µn+1

(
cn+1 − cn

)
, (13)

then, we can get

ϕn+1f
(
cn+1

)
− ϕnf (cn) = f (cn)

(
ϕn+1 − ϕn

)
(14)

+ ϕn+1
(
f
(
cn+1

)
− f (cn)

)
≤ f (cn)

(
ϕn+1 − ϕn

)
+ ϕn+1µn+1

(
cn+1 − cn

)
,

the specific choice of the stabilization term θn can be found in paper [3].
Building upon the semi-discrete stabilization framework for the chemical

potential, we now present the complete space-time discrete formulation. This
scheme systematically integrates the stabilization strategy with a mixed finite
element discretization in space and an implicit-explicit temporal scheme, ensur-
ing both thermodynamic consistency and numerical robustness: For any vh ∈
Vh,wh ∈ U0

h, qh, zh, φh ∈ Qh, we find un+1
s,h ∈ Vh,u

n+1
f,h ∈ Uh, c

n+1
h , ϕn+1

h , pn+1
h ∈

Qh such that
A(un+1

s,h , pn+1
h ,vh) = 0, (15a)

(Dτ (ϕ
n+1
h cn+1

h ), qh) +
∑
e∈EI

h

⟨cn∗
h un+1

f,h · n, [qh]⟩e (15b)

+
∑
e∈EI

h

ς1
he

⟨[µn+1
h ], [qh]⟩ = 0,

(λ−1(ϕn
h)u

n+1
f,h ,wh) =

∑
e∈EI

h

⟨[µn+1
h ], cn∗

h wh · n⟩e, (15c)

(pn+1
h , zh) = (cnhµ

n+1
h − f(cnh), zh), (15d)

(Dτϕ
n+1
h , φh) =

1

N
(Dτp

n+1
h , φh) + α(Dτ (∇ · un+1

s,h ), φh) (15e)

− α
∑
e∈EI

h

⟨{φhne}, [Dτu
n+1
s,h ]⟩e,
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Since the equation (15b) is nonlinear, we use the linear iteration method to
solve the equations (15).

A(un+1,l+1
s,h , pn+1,l+1

h ,vh) = 0, (16)

(
ϕn+1,l
h cn+1,l+1

h − ϕn
hc

n
h

τ
, qh) +

∑
e∈EI

h

⟨cn∗
h un+1,l

f,h · n, [qh]⟩e (17)

+
∑
e∈EI

h

ς1
he

⟨[µn+1,l+1
h ], [qh]⟩e = 0,

(λ−1(ϕn
h)un+1,l+1

f,h ,wh) =
∑
e∈EI

h

⟨[µn+1,l+1
h ], cn∗

h wh · n⟩e, (18)

(pn+1,l+1
h , zh) = (cnhµ

n+1,l+1
h − f(cnh), zh), (19)

(Dτϕ
n+1,l+1
h , φh) =

1

N
(Dτp

n+1,l+1
h , φh) + α(Dτ (∇ · un+1,l+1

s,h ), φh) (20)

− α
∑
e∈EI

h

⟨{φhne}, [Dτun+1,l+1
s,h ]⟩e.

As rigorously proven in reference [3], the fully discrete scheme adopted in
this paper achieves dynamic adaptive time step adjustment while ensuring the
boundedness of the molar density.
Theorem 3. ([3]) Assume that 0 < ϱ0 ≤ βcnh ≤ ϱ < 1 and the boundary
condition (3) holds. For n ≥ 0 and given constants 0 < δ1 < 1 and 0 < δ2 < 1,
if the time step size τ ln satisfies

τ l
n = min

K∈Kh


(
ϕn+1,l
h cnh (1− βcnh)

2 δ1 − (ϕn+1,l
h − ϕn

h)c
n
h

)
|K|∑

e∈∂K+
uf,h

cnhu
n+1,l
f,h · n|e|+

∑
e∈∂K+

µ

ς1
he

[µ(cnh)]|e|+ ϵ
, (21)

(
ϕn+1,l
h cnh (1− βcnh)

2 δ2 + (ϕn+1,l
h − ϕn

h)c
n
h

)
|K|

−

 ∑
e∈∂K−

uf,h

cn∗
h un+1,l

f,h · n|e|+
∑

e∈∂K−
µ

ς1
he

[µ(cnh)]|e|

+ ϵ

, τmax

 ,

where ϵ > 0 is a very small constant to avoid zero denominator, τmax is the
allowed maximum time step size to guarantee the accuracy of numerical solutions
and ∂K+

uf,h
= {e ∈ ∂K : un+1

f,h · n|e > 0, ∀K ∈ Kh}, ∂K−
uf,h

= {e ∈ ∂K :

un+1
f,h · n|e < 0, ∀K ∈ Kh}, ∂K−

µ = {e ∈ ∂K : [µ(cnh)] < 0, ∀K ∈ Kh}, ∂K+
µ =

{e ∈ ∂K : [µ(cnh)] > 0, ∀K ∈ Kh}. Then cn+1,l+1
h satisfies

0 < (1− δ1 (1− βcnh)
2
)cnh ≤ cn+1,l+1

h ≤ (1 + δ2 (1− βcnh)
2
)cnh <

1

β
.

It is also proved in paper [3] that the fully discrete numerical format based
on the stabilization method satisfies the properties of energy dissipation.
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Theorem 4. ([3]) Assume that the boundary condition (3) holds, 0 < ϵ ≤ cnh ≤
ϱ
β <

1
β . The stabilization parameter θn is taken as follows:

θn = max
K∈Kh

{
1,

(1− βcnh)
2

χn
1 (1− χn

1βc
n
h)

2 ,
(1− βcnh)

2

χn
2 (1− χn

2βc
n
h)

2

}
, (22)

where χn
1 = 1 − δ1 (1− βcnh)

2, χn
2 = 1 + δ2 (1− βcnh)

2. The total free energy
generated by the scheme (10) is dissipated as

DτE
n+1
h ≤ 0,

where

En+1
h =

∑
K∈Kh

∫
K

(
ϕn+1
h f(cn+1

h ) +
1

2
σe(u

n+1
s,h ) : ε(un+1

s,h )

)
dx (23)

+
∑
e∈EI

h

ς1
2he

⟨[un+1
s,h ], [un+1

s,h ]⟩e −
∑
e∈EI

h

⟨{σe(un+1
s,h )ne}, [un+1

s,h ]⟩e.

4 Numerical Examples

We design numerical experiments to validate the proposed computational frame-
work for modeling compressible gas flow in poroelastic media. The test cases are
specifically constructed to evaluate: the model’s capability in capturing coupled
hydro-mechanical processes, the algorithm’s performance in handling strong non-
linearities and the numerical scheme’s conservation properties. The simulations
consider methane gas with physical properties listed in Table 1, maintaining a
constant temperature of 330 K throughout all test cases.

Table 1. Physical properties of methane.

Pc(bar) Tc(K) Acentric factor Mw(g/mole) Viscosity (Pa · s)
45.99 190.56 0.011 16.04 10−5

4.1 Example 1

In this example, we investigate the gas flow dynamics within a closed domain to
rigorously validate both the physical model’s accuracy and the first numerical
scheme’s performance in simulating compressible gas flow. The simulation serves
to verify three fundamental physical principles: strict mass conservation, thermo-
dynamic consistency in energy dissipation, and boundedness of molar density.
The domain is initialized with a high-concentration zone (300 mol/m3 molar
density) at the center, surrounded by a low-concentration region (10 mol/m3).
A distinctive cross-shaped high-permeability zone (κ = 100 md) is embedded
within the central area, while the remaining domain maintains low permeability
(κ = 1 md). This configuration, as illustrated in Figure 1.
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Figure 2 provides critical validation of the proposed numerical scheme’s abil-
ity to preserve fundamental physical properties, demonstrating strict adherence
to energy dissipation principles, exact mass conservation, and molar density
boundedness. Figure 3 presents the temporal evolution of molar density dis-
tribution, demonstrating the dynamic mass transport characteristics. The cor-
responding thermodynamic driving forces are visualized in Figure 4 through
chemical potential contours, which reveal the non-equilibrium processes govern-
ing molecular diffusion.

Fig. 1. Example 1: Distributions of initial molar density and permeability. Left: initial
molar density. Right: initial permeability.

Fig. 2. Example 1: Left: System energy at different time steps. Middle: Mass conser-
vation at different time steps. Right: Minimum and maximum values of molar density.

4.2 Example 2

To validate the performance of our second numerical scheme, we conduct the
following test. We use the Perlin noise method to generate random permeability
in order to simulate realistic geological scenarios, The initial molar density is
obtained using c0 = c0 + rand(x) · (c1 − c0) , where rand(x) is a function for
generating random numbers within the range [0,1], c0 = 100 mol/m3, c1 = 300
mol/m3. In this test, we choose N = 1015 Pa, γ = 1015 Pa , η = 1011 Pa,
δ = 0.5. Figure 5 shows the initial molar density and permeability distribution.
Figure 6 demonstrates the proposed scheme’s ability to maintain energy dissipa-
tion, mass conservation, and molar density bounds. The left picture shows the
energy evolution, the right two picture verify strict molar density preservation
within physical bounds and mass conservation. Figure 7 illustrates the adaptive

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_15

https://dx.doi.org/10.1007/978-3-031-97632-2_15
https://dx.doi.org/10.1007/978-3-031-97632-2_15


12 Huangxin Chen et al.

Fig. 3. Distributions of molar density at different times in Example 1. From left to
right: The first: t = 0.1 h. The second: t = 0.4 h. The third: t = 0.8 h. The fourth: t
= 2 h.

Fig. 4. Distributions of chemical potential at different times in Example 1. From left
to right: The first: t = 0.1 h. The second: t = 0.4 h. The third: t = 0.8 h. The fourth:
t = 2 h.

parameters: the left picture displays the dynamic stabilization parameter ad-
justment, while the right picture shows the time step size continuously increases
as the system approaches equilibrium until reaching the preset maximum time
step size τmax = 1000, demonstrating computational efficiency. Figure 8, Figure
9 illustrate the temporal evolution of molar density, chemical potential energy,
respectively.

5 Conclusions

This paper focuses on the numerical simulation of single-phase gas flow with com-
pressible gas and rock in the context of underground storage of hydrogen and
carbon dioxide geological sequestration. It first formulates a fully coupled ther-
modynamic mathematical model considering the compressibility of gas and rock.
Then, two energy-stable numerical schemes are proposed. The first scheme is
based on an energy factorization approach, which combines a semi-implicit time-
stepping formulation with a spatial discretization using discontinuous Galerkin
approximations and mixed finite elements, ensuring energy dissipation and mass
conservation. The second scheme, based on a stabilization approach, conserves
the original energy functional, has an adaptive temporal discretization frame-
work, and can dynamically adjust the stabilization parameter. Both schemes
are proven to satisfy the energy dissipation law. Through numerical examples,
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including simulations in a closed domain with specific initial conditions and in
a domain with randomly generated permeability, the proposed computational
framework is validated. The examples demonstrate the model’s ability to cap-
ture coupled hydro-mechanical processes, the algorithm’s performance in han-
dling strong nonlinearities, and the numerical scheme’s conservation properties
such as mass conservation and bounded molar density. This study provides a con-
sistent and stable modeling and simulation framework with theoretical support
for the engineering practice of carbon dioxide sequestration and underground
storage of hydrogen.

Fig. 5. Example 2: Distributions of initial molar density and permeability. Left: initial
molar density. Right: initial permeability.

Fig. 6. Example 2: Left: Distributions of energy at different time steps. Middle: Mass
conservation at different time steps. Right: Minimum and maximum values of molar
density.
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