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Abstract. The processes of solidification and macro-segregation involve
intricate interactions across multiple physical, phase, and compositional
fields, including mass, momentum, energy, and material transfer. Accu-
rate prediction of phase transitions, chemical heterogeneities, and compo-
sitional flows is crucial in fields such as materials science, energy science,
and planetary science. Numerical benchmark studies provide an effec-
tive means to explore these phenomena. This paper presents an iterative
scheme based on operator splitting and evaluates its accuracy, stability,
and implementation through a relevant benchmark problem. The results
demonstrate strong performance of the scheme, particularly in capturing
key physical phenomena such as channel segregation, freckle formation,
and edge effects.

Keywords: Solidification · Multi-phase · Operator-splitting · Iterative
Scheme · Benchmark Modeling

1 Introduction

Solidification is a complex process involving the transfer of mass, momentum,
energy, and species, with multi-phase and multi-component interactions. Key
phenomena such as chemical heterogeneity, macro-segregation, and phase tran-
sitions between solid, mushy, and liquid regions are essential to understanding
material behaviors in fields like material science [20], energy storage [11], magma
ocean evolution [12], safe operation of pipelines [19] and the high-efficiency re-
covery of natural gas hydrate (NGH) from the subsurface [16].

Experimental studies using both opaque alloys (e.g., Al Cu, Sn Pb) and
transparent analogs (e.g., NH4Cl, Na2CO3) have provided valuable data and
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made progress for deep understanding of this physical process [10,9]. Numerical
simulation [15,22] is also a vital tool for understanding these complex processes,
especially when time and space constraints limit experimental methods. These
simulations are commonly based on mesh-free methods like SPH [8,7], moving-
grid methods like ALE [2], and fixed-mesh methods such as VOF, level-set [17]
and LBM [4]. Among these, the enthalpy-porosity methods [18,14] and the phase
field methods [21] are widely used for solidification simulations due to their
simplicity in dealing with phase transitions on a macroscale.

This paper introduces a novel iterative scheme based on operator-splitting
and matrix-based methods, designed to improve convergence rates and compu-
tational efficiency. The scheme is validated through benchmark tests, demon-
strating its capability to capture important physical phenomena such as macro-
segregation and phase transitions [3,18]. Additionally, the integration of vector-
ization and forward matrix assembly techniques enhances the scalability and
efficiency of the method, making it suitable for extending to 3D simulations.

The structure of the paper is as follows: Section 2 provides a concise summary
of the classical models and their assumptions. Section 3 introduces and derives
our proposed numerical scheme. Section 4 presents a classic benchmark example
and discusses the validation results. Finally, Section 5 concludes the study with
final remarks.

2 Mathematical model

The most fundamental and universal single-domain continuum mixture model
is derived from mass averaging and classical mixture theory. This model sug-
gests that the properties of the mixture are the result of the individual compo-
nents, with its governing equations resembling those of the individual phases.
It leverages the continuous phase transition of the mixture, represented by
phase fractions, while ensuring the conservation of mass, momentum, energy,
and components within the system. Since all governing equations follow a similar
convection-diffusion form, by introducing a general scalar quantity φω associated
with phase ω in a multiphase system, the general physical relationship can be
established. We define the partial volume density of phase for phase ω, namely
ρ̄ω = Vω

V
mω

Vω
= gωρω and ρ̄θω =

V θ
ω

Vω

mθ
ω

V θ
ω

= gθωρ
θ
ω as the partial volume density of

the component θ within phase ω.
The we have the mass fraction of one phase fω = ρ̄ω󰁓

ω ρ̄ω
. Then obviously

the relations for the volume fraction and mass fraction as follows:
󰁓

ω fω =
1;
󰁓

ω gω = 1. Based on the mass-averaged velocities and general variables, the
equations are as follows:

u =
1

ρ

󰁛

ω

ρ̄ωuω =
󰁛

ω

fωuω, (1)

φ =
1

ρ

󰁛

ω

ρ̄ωφω =
󰁛

ω

fωφω, (2)
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where the density of one mixture is ρ =
󰁓

ω ρ̄ω. The conservation law for general
scalar quantities can be written as:

∂

∂t

󰁝

V̄

[ρωφω] dV̄ω +

󰁝

S

[ρωuωφω] · ndSω =

󰁝

S

Jω · ndSω +

󰁝

V̄

SrωdV̄ω. (3)

The terms correspond to the dynamic term, convection flux, diffusion flux, and
the source term. Assuming smoothness and differentiability of the arguments
under the surface integrals, the divergence theorem yields:

∂

∂t
(ρ̄ωφω) +∇ · (ρ̄ωuωφω) = ∇ · (gωJω) + gωSrω. (4)

The conservation of mass, momentum, energy and component relations can be
referred by assigning the general quantities in the governing equation (4) with
different variables and doing summation for all phases ω.

Generally, the above conservation relations are applicable for multiple phases
and components. Here, we only consider the solid-liquid phase change (ω = l, s)
of the binary mixture (θ = A,B). Based on the above identity, the model for
solidification of this problem can be presented as:

Mass conservation:
∂ρ

∂t
+∇ · (ρu) = 0, (5)

where ρ = gsρs + glρl, u = fsus + flul.
Momentum equation:

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (µl

ρ

ρl
∇u) + ρg − µl

K

ρ

ρl
(u− us), (6)

where the body force is g and the diffusion term can be derived with some trivial
simplification, and the details can be referred to [3].

The flow in the mushy zone is considered laminar and Newtonian with con-
stant viscosity, treated as an isotropic porous medium without direction coupling
effects. Thus, the off-diagonal elements of the permeability tensor are zero. The
phase interaction term, based on the KozenyâĂŞCarman formula with relative
phase velocity, acts as a damping term in equation (6). The permeability for flow
in the mushy region is given by:

K =
λ2
2f

3
l

180 (1− fl)
2 , (7)

where λ2 represents the secondary dendrite arm spacing, a key microstructural
feature that influences inter-dendritic flow and is commonly used to determine
permeability.

Energy equation:

∂(ρh)

∂t
+∇ · (ρuh) = ∇ · (k∇T )−∇ · (ρ(hl − h)(u− us)), (8)
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where enthalpy h = fshs+flhl and the conductivity uses volume average instead
of mass average, k = gsks + glkl, because it is related to the size of the material
itself.

Defining average heat capacities cpl = 1
T

󰁕 T

0
cpldT and cps =

1
T

󰁕 T

0
cpsdT , the

solid and liquid phase enthalpies are

hs =

󰁝 T

0

cpsdT + h0
s = c̄psT, hl =

󰁝 T

0

cpl + h0
l = c̄plT + L,

where we set h0
s = 0 and h0

l = L, L is the latent heat of phase change. Based on
the mass average of heat capacity cp = fscps+flcpl, then we can easily arrive at

h = cpT + flL, (9)

Transport equation:

∂(ρC)

∂t
+∇·(ρuC) = ∇·(ρflDl∇C)+∇·(ρflDl∇(Cl−C))−∇·(ρ(Cl−C)(u−us)).

(10)
Considering the binary solid-liquid system, for the sake of conciseness of the
notation, C represents the concentration (or mass fraction) of the primary solute
of the binary mixture system. The diffusion in the solid phase can be ignored
compared with the liquid phase

󰀃
DA

l ≫ DA
s

󰀄
. With this assumption and the

identity ∇Cl = ∇C +∇ (Cl − C), (10) can be deduced.
Lever rule:
The component conservation and the constraint on mass fraction for the

binary solid-liquid system indicate:

C = flCl + fsCs. (11)

fl + fs = 1. (12)

Then, the "lever rule" can be deduced as:
󰀫
fs =

Cl−C
Cl−Cs

,

fl =
C−Cs
Cl−Cs

.
(13)

The implication of the "lever rule" can be easily appreciated from the above
equations. They describe the relationship between the mass fraction of the com-
ponent and the phase fraction in a binary system.

Phase equilibrium relation:
For this dynamic problem, even the local thermodynamic equilibrium has

been assumed, but the phase equilibrium relations still need to be specified to
ensure the closure of the PDE system. Usually, this relation is characterized by
the equation of state (EoS). The van der Waals (VdW) EoS or Peng-Robinson
(PR) EoS is widely recognized for gas-liquid problems [6]. Generally, the solute
fraction and phase fraction can be determined based on the EoS and the con-
strains. While there is no widely accepted EoS model for the solid-liquid problem,
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Fig. 1. Linear approximation of the phase diagram

the phase diagram from experiments with some approximations are still used as
the basis for simulation. Combining the "lever rule" with the phase diagram, Cl,
Cs and fl, fs can be determined with certain T and C.

Simplified model:

– The velocity of the solid phase is zero (us = 0).
– Heat capacities of both phases are constant and equal (cpl = cps = cp).
– The densities of liquid and solid phases are equal and constant, thus fl =

gl; fs = gs.
– The thermal and solutal driven buoyancy body forces are characterized by

the Boussinesq approximation: ∆ρ = (−βT (T − Tref )− βc (Cl − Cref )) ρ0.
– The linear approximation of the phase diagram is shown in Figure 1 (the

slopes for the liquidus and solidus lines are fixed, and they correspond to kp
and L being constants).

Then, the simplified and reduced model can be expressed as follows:

∇ · u = 0, (14a)
∂u

∂t
+ (u ·∇)u = ∇ ·

󰀕
µl

ρ0
∇u

󰀖
− 1

ρ0
∇p− µl

ρ0
K−1u+

(ρ0 +∆ρ)

ρ0
g, (14b)

∂T

∂t
+∇ · (uT ) = ∇ · ( k

ρ0cp
∇T )− L

cp

∂gl
∂t

, (14c)

gl = 1− 1

1− kp

T − Tl

T − Tm
, (where Tl = LC + Tm), (14d)

∂C

∂t
+∇ · (uCl) = ∇ · (glDl∇Cl) , (14e)

Cl =
C

1− (1− kp) (1− gl)
. (14f)

Then unknowns become u, p, T, C,Cl, gl and they can be determined by the
above system with 6 equations.
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3 Numerical scheme

On the basis of the aforementioned mathematical model (14), an iterative nu-
merical scheme are proposed and the classical fully decoupled scheme is also
presented as comparison. In this section, operator-splitting and matrix-based
techniques are employed for constructing the schemes. The sequence of numer-
ical solutions follows the real physical process: the cooling is the fundamental
startup source, then local phase equilibrium is assumed and T, gl are strong cou-
plings, the temperature is determined by the energy equation, then the thermal
and solutal driven force induces the flow, and the flow will eventually cause
the transport of the component. Thus, the temporal discretization is given in
this order. The superscripts n + 1 and n represent implicit and explicit terms,
respectively.

3.1 The operator-splitting method for energy equation:

In this part, schemes are designed to solve the energy equation and to handle the
local phase equilibrium relation concurrently, namely the strong coupling effect
between the temperature and phase fraction.

A fully decoupled scheme for the energy equation:
The solution procedure for the energy equation is split into two steps: first

step takes into account heat convection and diffusion,

T ∗ − Tn

∆t
+ un ·∇T ∗ = ∇ ·

󰀕
k

ρ0cp
∇T ∗

󰀖
. (3.1)

The second step is responsible for the correction of latent heat when a phase
transition occurs,

Tn+1 − T ∗

∆t
= − L

cp

gn+1
l − gnl

∆t
. (3.2)

The phase equilibrium relations yields:

gn+1
l = 1− 1

1− kp

Tn+1 − Tl(C
n)

Tn+1 − Tm
, (3.3)

and
Tl = Tm + LCn, (3.4)

where Tl corresponds to the liquidus temperature at the current concentration
C. Because of the segregation process, the deviation of concentration Cn from
the uniform concentration C0 will result in a range of Tl(C

n) across the entire
computational domain. Then, by substituting it in the second step of operator-
splitting expressions, a quadratic equation of the liquid volume fraction gn+1

l

will be found:
a · (gn+1

l )2 + b · gn+1
l + c = 0, (3.5)
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where coefficients are
󰀻
󰀿

󰀽

a = 1− kp,
b = kp − gnl (1− kp) +

cp
L (1− kp) (Tm − T ∗) ,

c = −
󰀃
gnl +

cp
L T ∗󰀄 kp + cp

L (Tl − (1− kp)Tm) .
(3.6)

By employing the bound [0, 1] for the phase fraction and the truncation operation
for the root, the unique solution for gl will be obtained. It must be emphasized
that the second step is crucial for accurately quantifying the change in tempera-
ture when it involves the phase change and the latent heat releases. The second
step will also determine Tn+1. It is worth remarking that the cooling decreases
temperature and cancels the latent heat at the initial stage, but when it comes
to the eutectic temperature, phase change will occur isothermally; that is, the
temperature at any point can only decrease once the material at that point has
solidified completely.

An iterative scheme for the energy equation:
The fully decoupled scheme loses accuracy to some extent, while solving

nonlinear systems directly is not expected. So, based on the operator-splitting
idea, an iterative scheme is proposed here to enhance the accuracy at each time
step. Given a tolerance 󰂃 and Tn+1

0 = Tn. For q ≥ 0, firstly we solve

T̂n+1
q+1 − Tn

∆t
+∇ ·

󰀃
unTn+1

q

󰀄
= ∇ ·

󰀕
k

ρ0cp
∇Tn+1

q

󰀖
− L

cp

gn+1
l,q+1 − gnl

∆t
, (3.7)

where the subscript q represents the iteration number at the current time step.
After we get the T̂q+1 from the first step, Secondly, we solve

Tn+1
q+1 − T̂n+1

q+1

∆t
+∇ ·

󰀃
unTn+1

q+1 − unTn+1
q

󰀄
= ∇ ·

󰀕
k

ρ0cp
∇Tn+1

q+1 − k

ρ0cp
∇Tn+1

q

󰀖
.

(3.8)
As the iteration progresses, if the difference between Tn+1

q+1 , Tn+1
q and T̂q+1 be-

comes sufficiently small, then it is considered convergence. The convergence cri-
teria is set:

󰀐󰀐Tn+1
q+1 − Tn+1

q

󰀐󰀐
L∞ ≤ 󰂃 and

󰀐󰀐󰀐Tn+1
q+1 − T̂n+1

q+1

󰀐󰀐󰀐
L∞

≤ 󰂃 both hold. Oth-
erwise, we continue the iteration by setting q := q+1 and going back to compute
a new Tn+1

q+1 .

Remark 1. In the first step, solving the quadratic equation of the liquid fraction
is still necessary. In contrast with a fully decoupled one, the coefficient b will be
updated by b := b− cp

L (1− kp)∆tγq and c will be updated by c := c− cp
L kp∆tγq,

where γq = ∇ ·
󰀓

k
ρcp

∇Tn+1
q

󰀔
−∇ ·

󰀃
un+1Tn+1

q

󰀄
.

3.2 The semi-implicit pressure correction method for momentum
equation:

un+1 − un

∆t
+un·∇un+1 = ∇·

󰀕
µl

ρ0
∇un+1

󰀖
− 1

ρ0
∇pn+1−µl

ρ0
K−1un+1+

(ρ0 +∆ρ)

ρ0
g,

(3.9)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_14

https://dx.doi.org/10.1007/978-3-031-97632-2_14
https://dx.doi.org/10.1007/978-3-031-97632-2_14


8 X. Feng et al.

∇ · un+1 = 0. (3.10)

The pressure correction scheme is used for solving velocity. Combining the divergence-
free condition with the momentum equation gives

u∗ − un

∆t
+un ·∇u∗ = ∇ ·

󰀕
µl

ρ0
∇u∗

󰀖
− 1

ρ0
∇pn− µl

ρ0
K−1u∗+

(ρ0 +∆ρ)

ρ0
g, (3.11)

and the pressure correction Poisson equation

∇2
󰀃
pn+1 − pn

󰀄
=

ρ0
∆t

∇ · u∗. (3.12)

Then the velocity can be updated through pressure correction:

un+1 − u∗

∆t
= − 1

ρ0
∇
󰀃
pn+1 − pn

󰀄
(3.13)

3.3 The matrix-based technique for the species transport equation:

Cn+1 − Cn

∆t
+∇ ·

󰀃
un+1Cn+1

l

󰀄
= 0, (3.14)

If we consider the diffusion effect in the liquid phase as well, we have

Cn+1 − Cn

∆t
+∇ ·

󰀃
un+1Cn+1

l

󰀄
= ∇ ·

󰀃
glDl∇Cn+1

l

󰀄
. (3.15)

It must be noted that convection terms in the momentum equation, transport
equation, and energy equation are all treated with an upwind implicit scheme.
However, the main difficulty caused by the transport equation comes from Cn+1

l

in the convection and diffusion terms, which differ from Cn+1 in the temporal
term. According to the explicit relationship between Cl and C:

Cn+1
l =

Cn+1

1− (1− kp)(1− gn+1
l )

, (3.16)

in matrix form like:
Cn+1

l = AgC
n+1, (3.17)

where Ag is a diagonal matrix. Given the upwind coefficient matrix Acon and
the Laplacian coefficient matrix Alap, the temporal discrete transport equation
in matrix and vector form can be expressed as:

󰀕
1

∆t
I +Acon ∗Ag −Alap ∗Ag

󰀖
Cn+1 = rhs, (3.18)

where I is the identity matrix. The notation rhs denotes the right-hand side
vector of the linear system.

This method with fully implicit scheme for C will enhance numerical sta-
bility and accuracy without introducing more explicit information of Cn in the
discretization of the last two terms in the original expression used in traditional
methods:

∂C

∂t
+∇ · (uC) = ∇ · (glDl∇C) +∇ · [glDl∇ (Cl − C)]−∇ · [(Cl − C)u] .
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3.4 Updating the concentration:

With the determined gn+1
l and Cn+1, the Cn+1

l and Cn+1
s can be updated by

Cn+1
l =

Cn+1

1 +
󰀃
1− gn+1

l

󰀄
(kp − 1)

, (3.19)

and
Cn+1

s = kpC
n+1
l . (3.20)

Now, the progress of single time step has been completed. The iterative scheme
based on operator splitting and matrix-based techniques, enhances accuracy and
numerical stability.

3.5 Spatial discretization:

The finite volume method based on staggered grids, as shown in Figure 2 is
applied. The computational domain Ω = [0, lx]× [0, ly] includes a finite number
of rectangular subdivisions. The mesh vertex points are located at:

xi = i ∗ hx, i = 0, 1, · · · , nx,

yj = j ∗ hy, j = 0, 1, · · · , ny,

where nx and ny are the number of meshes in each direction and hx = lx/nx

and hy = ly/ny are mesh sizes. Four sets of mesh points (west-east edge points,
south-north edge, cell-centered, vertex) are defined:

Ewe =

󰀝󰀕
xi,

yj−1 + yj
2

󰀖
| i = 0, 1, . . . , nx; j = 1, 2, . . . , ny

󰀞
,

Esn =

󰀝󰀕
xi−1 + xi

2
, yj

󰀖
| i = 1, 2, . . . , nx; j = 0, 1, . . . , ny

󰀞
,

Ec =

󰀝󰀕
xi−1 + xi

2
,
yj−1 + yj

2

󰀖
| i = 1, 2, . . . , nx; j = 1, 2, . . . , ny

󰀞
,

Ev = {(xi, yj) | i = 0, 1, · · · , nx; j = 0, 1, · · · , ny} .

The east and north interfaces of one cell are considered the front interfaces.
On the contrary, the west and south interfaces are the back interfaces. Next, we
have the discretized spaces:

Uh = {u : Ewe → R} , Vh = {v : Esn → R} ,

Ph = {P : Ec → R}, Nh = {interpolation : Ev → R}.

Uh, Vh are for physical variables u, v and all other physical scalar quantities
(pressure P , temperature T , concentration C, phase fraction gl and gs, etc.)
correspond to Ph. The space Nh is for the interpolation of coefficients such as
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Uh 

Vh 

Nh 

back faces 

front faces n

s

ew 

Fig. 2. Spatial discretization based on the staggered grid

µ. Multi-physical governing equations all obey the general convection-diffusion
form:

∂φ

∂t
+∇ · (uφ) = ∇ · (D∇φ) + Sr(φ), (3.21)

where φ denotes a general physical variable and D is the general diffusion coef-
ficient; the convection velocity is denoted by u and Sr(φ) represents the source
term. It is worth mentioning that, for the Darcy-like damping source term in the
momentum equation, the fully implicit scheme for un+1 is vital as well, which
corresponds to Sr(φ

n+1
i,j ) in (3.21).

4 Numerical Simulation

This section presents simulations and analyses of a numerical benchmark case
using the proposed methods. The solidification and macro-segregation processes
of two common binary alloy systems, Sn-10%Pb and Pb-48%Sn, are examined.
Data on the physical properties of these two kinds of alloys can be referred
to [1,18]. The findings on physical phenomena, as well as the evolution of ve-
locity, temperature, phase fraction, and chemical component distributions, are
presented. All numerical simulations were conducted on a MacOS Mojave sys-
tem equipped with a 2.5GHz quad-core Intel Core i7 processor. The codes were
developed from scratch using Matlab.

Example: solidification of Sn-10%Pb alloy in a 2D domain This
benchmark case examines the solidification of a Sn-10%Pb binary alloy within a
rectangular cavity [1]. The computational domain, initial conditions, and bound-
ary conditions are illustrated in Figure 3. Initially, the cavity is filled with a still
liquid alloy at a uniform temperature T0 = Tl and a consistent chemical concen-
tration C0. At t = 0, the solidification process is triggered by cooling the left and
right walls of the cavity via natural convection, described by the heat transfer
coefficient hT :

qT = hT (T − Text).

The top and bottom walls of the cavity are thermally insulated, and it is
assumed that the cavity walls are rigid and nonslip. Phase transition occurs
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within the cavity, with inner flow driven by thermal and solutal buoyancy forces.
A central observation point E is established to track the evolution of the flow
and concentration, allowing us to validate the accuracy of the proposed scheme.

Numerical results were obtained using a 150× 180 mesh with a time step of
∆t = 5×10−3s. Figures show the solidification process at t = 5s, 38s, 168s, 350s,
depicting temperature, concentration, liquid fraction, velocity, streamlines, and
phase interfaces. The gl = 0.99 and gl = 0.01 contours represent the liquid/mush
and mush/solid interfaces.

At the initial stage of solidification (t = 5s and t = 38s), thermal buoyancy
dominates, causing intense downward flow near the liquid/mush interface, with
a clockwise circulation inside the liquid (see Figures 4(a) and 5(a)). The Pb-
enriched melt increases density, intensifying downward flow. At t = 5s, the
liquid/mush interface follows the temperature contour, but by t = 38s, the
interface deviates due to higher Pb concentration (see Figure 4(a), 6(b)).

From t = 38s to 168s, the high Pb concentration lowers the liquidus tem-
perature, causing the bottom section to reach mush last. Severe flow transports
Pb, forming a platform-shaped Pb-enriched region and raising it along the cav-
ityâĂŹs centerline. The temperature gradient and component transport cause
bending of liquid fraction contours, resulting in channel segregation (see Figure
5(c)).

At t = 168s, the channels develop, and most of the domain is mush, except for
the left-bottom corner (see Figure 5(c)). A thin isothermal phase transition layer
appears at the right-bottom corner signaling the approach of full solidification.

By t = 350s, the mush/solid interface reaches the center, and solidification
completes by t = 450s, with the channel segregation pattern matching previous
results [5,13] (see Figure 5(d), 7(b)). Figure 7(a) shows the velocity magnitude
change at point E, which aligns well with our predictions, exhibiting two peaks
and one valley. The first peak corresponds to the most intense upward flow, and
the second peak, higher than the first, corresponds to the severe downward flow
near the liquid/mush interface. The minimum velocity occurs when point E is
at the center of the vortex.

Figure 7(b) shows the liquid fraction profile at point E. The final segregation
results are consistent with those of Combeau et al. [5] and Shen et al. [13]. At
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Fig. 3. Schematic of physical settings in Example 1
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Fig. 4. Evolution of the temperature field with time; the liquid/mush interface (ma-
genta dotted line); the mush/solid interface (black dotted line).
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Fig. 5. Evolution of liquid fraction with time in Example 1; the iso-thermal phase
transition layer (enclosed by green solid line); liquid fraction (colorbar).

(a) t = 5s (b) t = 38s (c) t = 168s (d) t = 350s

Fig. 6. Evolution of concentration variation C−C0 with time; the liquid phase fraction
contour line (white solid line); the streamline (black solid line with arrow); C − C0

(colorbar)

around t = 350s, the liquid fraction drops sharply, indicating the transition
from a non-isothermal to an isothermal process, with latent heat being released
during phase change while the temperature remains constant until complete
solidification. This confirms that our scheme effectively captures these critical
properties and agrees with other benchmark results.

In Figure 4, the L∞ norms of the differences among intermediate temper-
atures and temperatures of neighboring iterations decrease continuously. The
convergence criteria are set to be 󰂃 = 10−6 and these two kinds of norms will
be less than the criteria within 38 iterations. The iterative method can obtain
more accurate results for each time step and less numerical error accumulated
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Fig. 7. (a) Time-dependent profile of velocity magnitude at central sample point E;
(b) time-dependent profile of liquid fraction gl at central sample point E.

through the entire dynamic physical process. To assess the accuracy, we can ex-
amine the final segregation maps depicted in Figure 8. The patterns obtained
from our fully decoupled code are like the results of Shen’s decoupled method
[13]. The iterative scheme we employ yields a greater concentration of enrich-
ment in the segregated channel layers, and the channel pattern is more agreeable
to the results reported by Combeau et al.[5], which were simulated by high-order
algorithms developed by the Institute Jean Lamour and the Fluent software.

(a) Decoupled (b) Iterative (c) Shen et al. (d) Combeau et al.

Fig. 8. The final segregation maps computed via (a) fully decoupled scheme;
(b)iterative scheme; (c) and (d) are reference results from literature

5 Conclusions

This work presents a complete mathematical model for solidification and macro-
segregation, emphasizing their broad applicability. We propose an iterative scheme
and matrix-based methods to address these problems. A classic 2D benchmark
case is presented to validate the accuracy and computational efficiency of the
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Fig. 9. Profile of the L∞ norms with the number of iterations and their devia-
tion(averaged by multiple time steps).

approach. The results computed by this iterative method demonstrate better
convergence and accuracy compared to traditional fully decoupled methods, with
contours showing good agreement with numerical results from high-order algo-
rithms and commercial software. Future work can enhance this framework by
incorporating real-phase equilibrium relations like equations of state.
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