
Generation of quality Green's function libraries in

complex three-dimensional crustal structures by

adaptive mesh re�nement

∗Kai Nakao1, ∗Hideaki Ito1, Tsuyoshi Ichimura1, Kohei Fujita1, Lalith
Wijerathne1, and Muneo Hori2

1 Earthquake Research Institute and Department of Civil Engineering, The
University of Tokyo, Bunkyo, Tokyo, Japan

{k-nakao, hideakiito, ichimura, fujita, lalith}@eri.u-tokyo.ac.jp
2 Research Institute for Value-Added-Information Generation, Japan Agency for

Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan
horimune@jamstec.go.jp

Abstract. Fault slip estimation from crustal deformation is essential
for understanding earthquake mechanisms, and three-dimensional sub-
surface models have become incorporated in the estimation to account
for the geometric and material heterogeneity in the crust. In the esti-
mation process, a precomputed Green ’s function library (GFL), which
represents the displacement �eld due to unit point loads at each receiver
on ground surface, can be employed for computing arbitrary source re-
sponses through convolution of the source terms and the GFL. However,
challenges remain in generating meshes adapted to the singularity of the
point loads and in assessing the accuracy of the GFL. We developed a
GFL computation method, Adaptive Finite Element Method for Green's
Function Library (AFEM-GFL). By combining initial meshes with good
element quality and a mesh re�nement algorithm that is resistant to ele-
ment quality degradation, our method can generate meshes well adapted
to computing GFLs. The accuracy of the results is assessed through
convergence of the solution and comparisons between the convergent so-
lutions from di�erent initial meshes. In numerical experiments on a two-
layered half-space and a realistic crustal structure of Japan, accurate and
convergent GFLs were obtained with moderate amount of computational
resources in the settings where it was di�cult to achieve with uniform
meshes even using a massively parallel supercomputer. These quality
GFLs will serve as a robust foundation for reliable fault slip estimation.

Keywords: Green's function library · Adaptive �nite element method
· Crustal structure

1 Introduction

Estimation of coseismic fault slip based on crustal deformation is crucial for
deepening our understanding of earthquake mechanisms and assessing disaster
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risks. In the estimation, it is common to model the crust as a �at and homo-
geneous semi-in�nite elastic medium [12] and estimate parameters of the fault
model that can reproduce the observed crustal deformation. On the other hand,
geometric and material heterogeneity in the crust should be considered in cases
where the subsurface structure is complex. Attempts have been made to con-
struct a three-dimensional subsurface structure model that can properly repre-
sent these features and employ numerical crustal deformation simulations by the
�nite element method or the spectral element method as the forward analysis
in the estimation process[6]. When there is a nonlinear relationship between the
fault model parameters and crustal deformation, the computational cost for the
estimation can be huge performing costly numerical simulations every time the
parameters are updated in the optimization process. In such cases, methods that
reduce the computational costs utilizing the reciprocity theorem [5] are e�ective.
According to the reciprocity theorem, the displacement observed at a receiver
point on the ground surface due to a load applied at a subsurface source point
is equal to the displacement observed at the source point due to a load applied
at the receiver point. A fault slip can be approximated as a set of forces at
several points in numerical simulations. If we precompute a set of the subsur-
face displacement �eld due to unit point loads applied at each receiver point on
the ground surface, which we call a Green's Function Library (GFL), the dis-
placement on the ground surface due to arbitrary fault slips can be obtained by
convolution of the source terms and the GFL without performing simulations.

Challenges in constructing GFL for 3D subsurface structures include the
quantitative evaluation of the accuracy of the GFL and the generation of high-
quality meshes. In �nite element analysis of crustal deformation due to fault
slips, it is known that the size of the elements near the fault a�ects the accu-
racy of the solution [9]. Similarly, the accuracy of the GFL is expected to be
a�ected by the elements near the loading points on the surface. Therefore, it is
desirable to generate GFL using methods that allow veri�cation of su�ciency
of the mesh resolution based on the quantitative evaluation. Moreover, realistic
crustal structures often have thin layers with complex geometry near the ground
surface. When controlling the mesh size to re�ne the elements around the load-
ing points, it is challenging to generate meshes that accurately represent the
geometry while maintaining good element quality (i.e., avoiding elements with
high aspect ratio) when using general-purpose mesh generators.

To address the aforementioned challenges, we developed a method to gener-
ate GFL, which we call Adaptive Finite Element Method for Green's Function
Library (AFEM-GFL). Adaptive �nite element method (AFEM) is a technique
that iteratively conducts �nite element analysis, estimates the error, and re�nes
the mesh based on the error to accurately compute �elds with signi�cant varia-
tions [1]. In AFEM-GFL, algorithms that can protect the layers geometry and
are resistant to element quality degradation are employed for initial mesh gener-
ation and mesh re�nement. This allows for the generation of high-quality meshes
well adapted for the computation of GFLs. Regarding the accuracy evaluation
for the GFLs, the convergence of the solution can be assessed from the di�erence
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of the solutions between subsequent iterations. Furthermore, inadequate mesh
quality could lead to convergent but inaccurate solutions. By comparing solu-
tions obtained from runs with di�erent initial meshes, it is possible to detect if
any signi�cant issues that a�ect the accuracy of the GFLs arise during the mesh
re�nement. The GFL, whose quality is assured from these evaluations, can be a
robust foundation for the reliable fault slip estimation.

This paper describes the details of the AFEM-GFL method in Section 2 and
demonstrates its e�ectiveness through numerical experiments computing GFL
for a simple two-layered half-space and a realistic crustal structure of Japan in
Section 3. A summary of this study is provided in Section 4.

2 Method: AFEM-GFL

This section describes the details of the developed GFL computation method,
AFEM-GFL. As shown in Algorithm 1, AFEM-GFL generates n di�erent initial
meshes, and GFLs are obtained by adaptive mesh re�nement starting from each
of them, then accuracy of them is evaluated. In this study, we assume n = 2
for the number of initial meshes, but it can be increased to three or more to
ensure robustness. Within this framework, by employing initial meshes with �ne
resolution and good element quality, along with a mesh re�nement strategy that
is resistant to element quality degradation, high-quality adaptive meshes can be
generated even for crustal structures with complex geometries. The degrees of
freedom tend to be large from the early stages in this approach, and that large
cost is handled by parallelizing the computation by MPI. Below, we explain the
details of each step in Algorithm 1.

Algorithm 1 AFEM-GFL

1: Generate n initial meshes (2.1).
2: for mesh in (mesh1, mesh2, · · · , mesh_n) do *
3: for i = 1, · · · , imax do

4: Compute GFL by �nite element method (2.2).
5: Estimate posterior error for each element (2.3).
6: Re�ne mesh as indicated by error estimator (2.4).
7: end for

8: end for

9: Evaluate accuracy of GFLs (2.5).
10: if the accuracy is not su�cient then
11: Improve initial mesh quality and go to *
12: end if

2.1 Generation of initial meshes

When targeting models with complex layer structures, generating the initial
meshes is not straightforward. In this study, we utilize the mesh generation algo-
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rithm by Ichimura et al. (2009) [7], which can produce meshes that can properly
represent complex layer structures with good element quality. This algorithm
covers the entire domain with cubic background cells, and approximate the ge-
ometry of the layers for each cell to avoid generating elements with high aspect
ratios, then decompose the domain into tetrahedral elements. Furthermore, this
approach can form an octree structure of background cells, allowing it to hier-
archically merge cells, thus reducing the number of elements in regions distant
from the layer boundaries.

This method takes two parameters: ds, which is the side length of the back-
ground cells, and nk, which controls the largest merged cell size, ds × 2nk−1. If
ds is too large, the approximation of the geometry of the layers may become too
coarse. In AFEM-GFL, whether ds is su�ciently small that this approximation
does not signi�cantly a�ect the GFLs can be checked based on the accuracy
evaluation described in Section 2.5. Also, excessive merging of cells may result
in leaving inadequately re�ned regions in the mesh. nk is set to one or two in
this study.

2.2 Computation of GFL

To calculate the displacement �elds by loading in x, y, and z directions at each
loading point on the top surface of the model, the following governing equation is
discretized and solved by the �nite element method in the semi-in�nite domain:

∇ · σ + f c = 0. (1)

Here, σ is the stress tensor, and f c is the body force equivalent to a point load:

f c = sδ(x− ξ), (2)

where s is the load vector and ξ is the loading point. Each component of stress
tensor can be expressed in terms of the displacement as

σij = λδij
∂uk

∂xk
+ µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(3)

where λ and µ are Lamé parameters, and δij is the Kronecker delta. Discretizing
the equation using a set of basis functions, solving Eq. (1) reduces to solving the
following linear equation:

Ku = f . (4)

Here, K is the sti�ness matrix, and u and f are nodal displacement and force
vectors, respectively. Speci�cally, f has non-zero values only for components cor-
responding to nodes in elements that contain ξ. To better represent the in�nite
conditions with a smaller computational domain, in�nite elements are imple-
mented on the sides and bottom of the model [8]. The adaptive conjugate gra-
dient method [3] is used to solve Eq. (4). When there are M loading patterns,
we obtain the GFL {ui | 1 ≤ i ≤ M} by solving Eq. (4) for each corresponding
nodal forces f i (i = 1, · · · ,M).
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2.3 Posterior error estimation

Based on the results of �nite element analysis, posterior error estimation is per-
formed for each element, and those predicted to have large errors are targeted
for re�nement. In this study, we employ the posterior error estimator for elas-
ticity problems proposed by Vefürth (1999) [14]. Once the displacement �eld uh

is determined, the posterior error estimator ηK for element K is given by:

ηK =

{
h2
K ∥RK(uh)∥2K +

∑
E∈EK

1

2
hE ∥RE(uh)∥2E

} 1
2

. (5)

Here, hK and hE are the diameters of element K and face E, respectively, and
EK is the set of faces comprising K. RK(uh) and RE(uh) denote the residuals
at K and E, respectively. These residuals are de�ned as:

RK(uh) =

∫
K

∥∇ · σ(uh) + f c∥2dV (6)

RE(uh) =

{∫
E
∥JE(nE · σ(uh))∥2dS if E ∈ EΩ

0 otherwise
, (7)

where JE and nE are the jump operator and normal vector on E, respectively.
EΩ is the set of faces which are not on the boundary of the model. However, for
elements containing the loading points, the singularity of f c makes it di�cult
to compute RK(uh). In such cases, ηK is not computed, and those elements
are always selected for re�nement. In the computation of GFL, M posterior
error estimators ηiK (i = 1, · · · ,M) are obtained corresponding to the M loading
patterns. From these, we de�ne the following metric: η̃K = maxi η

i
K/ūi

K . Here,
ūi
K is the average displacement norm for loading pattern i at nodes in the element

K. Normalizing the error estimator by the displacement aims to mitigate locally
large errors near the loading points. The elements satisfying η̃K > θη̃max are
selected for re�nement, where η̃max is the maximum value of η̃K among elements
not containing the loading points, and θ is a threshold value set to 0.01 in this
study.

2.4 Mesh re�nement

In mesh re�nement, the selected elements are subdivided into smaller elements.
In re�ning the unstructured meshes for complex geometries, a highly robust
algorithm must be used, capable of preserving the representation of the layer
structures while maintaining good element quality. In this study, we re�ne the
mesh by tetrahedral bisection. Tetrahedral bisection involves adding a new node
at the midpoint of an edge of the target tetrahedron to divide it into two tetrahe-
dra, and dividing tetrahedra containing hanging nodes into multiple tetrahedra.
By choosing bisecting edges according to the algorithm proposed by Arnold &
Mukherjee (1999) [2], it is analytically guaranteed that this process yields a con-
forming mesh when repeated a �nite number of times, providing high robustness
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for the complex geometries. Furthermore, it is ensured that the shapes of the
generated tetrahedra are closed to a �nite set of shape patterns determined by
the original tetrahedron, supporting that this method is resistant to element
quality degradation. Protection of the layer structures is achieved by inheriting
the properties of each original tetrahedron to the ones generated by bisection.

Additionally, smoothing of the mesh is performed to locally improve the
quality of the elements generated by bisection. The nodes of the newly generated
elements and their neighbors are moved according to

P new

i = P old

i +
λ

|Ni|
∑
j∈Ni

(
P i,j − P old

i

)
(8)

until the maximum aspect ratio of those elements stops decreasing. In Eq. (8),
P old

i and P new

i denote the positions of node i before and after the move, re-
spectively, while P i,j is the position of node j which is adjacent to node i. Ni

represents the set of nodes adjacent to node i, and λ is a small constant. The
nodes are moved in the direction of the average position of their neighbors to
mitigate the degradation of element quality by bisection. To prevent destruction
of the layer structures, the smoothing is performed only for nodes not on the
layer boundaries.

2.5 Accuracy evaluation of GFLs

Although the accuracy of the solutions can be predicted by the error estimator
ηK , it cannot be calculated for elements containing the loading points. Conse-
quently, mesh re�nement does not necessarily lead to a reduction in ηK for all
the elements. For a more direct accuracy evaluation, displacements are sampled
at several points in the model, and used to calculate accuracy metrics.

As an indicator of convergence of the GFL, the following dij is de�ned:

dij =
1

M

M∑
l=1

√∑3
k=1

(
ui
j,k,l − ui−1

j,k,l

)2

√∑3
k=1

(
ui−1
j,k,l

)2
. (9)

Here, ui
j,k,l is the k-th component of the displacement at the sampling point j for

loading pattern l obtained on the mesh after i-th re�nement. The convergence of
dij for all j as i increases indicates that the sampled displacements are converging.

dij can be calculated for each of GFL obtained on mesh1 and mesh2.
In cases where inadequately re�ned regions remain in the mesh, extremely

poor quality elements are generated, or the approximation of the layer structures
is too coarse, dij approaching zeros might indicate convergence of the GFL to

incorrect solutions. To detect such situations, the following eij is de�ned:

eij =
1

M

M∑
l=1

√∑3
k=1

(
ui1
j,k,l − ui2

j,k,l

)2

√∑3
k=1

(
ui1
j,k,l

)2
. (10)
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Here, ui1
j,k,l and ui2

j,k,l are the displacements sampled from GFLs on mesh1 and

mesh2, respectively. The convergence of eij for all j as i increases indicates that
the convergent GFLs are consistent between mesh1 and mesh2. In such a situa-
tion, it is evaluated that no issues that distort the sampled displacements have
occurred during the mesh re�nement process, and high-accuracy GFLs have been
obtained. If eij remains large and does not decrease in the iterative mesh re�ne-
ment process, it is necessary to improve the quality of the initial meshes and
rerun AFEM-GFL.

3 Numerical Experiments

In this section, we describe the numerical experiments targeting a two-layered
half-space and a realistic crustal structure in Japan. Section 3.1 discusses a nu-
merical experiment where the response due to point loads at a single point on the
top surface of the two-layered half-space is computed by AFEM-GFL. Through
this experiment, we demonstrate AFEM-GFL's capability to compute displace-
ments in high accuracy in terms of the metrics dij and eij , and examine how the
mesh re�nement progresses and how the response converges. Section 3.2 discusses
a numerical experiment for a realistic crustal structure in Japan, where GFL is
obtained by computing responses due to loads at multiple points and crustal de-
formation at the loading points is computed using the obtained GFL. Through
this experiment, we demonstrate that AFEM-GFL is also e�ective for analy-
sis targeting models with complex geometries and that high-accuracy crustal
deformation can be computed from the obtained GFL.

3.1 Two-layered half-space

For a model consisting of two horizontal layers with di�erent material properties,
we computed the response due to loads at a single point on the top surface of the
model. The layer structure and point load settings are shown in Table 1, with an
overview of the model shown in Fig. 1. We denote the settings where the initial
mesh was generated with (ds, nk) = (1.4 km, 2) and (2.8 km, 1) as AFEM-GFL1
and AFEM-GFL2, respectively. This numerical experiment involved 15 iterations
of mesh re�nement for both AFEM-GFL1 and AFEM-GFL2. For calculating the
metrics dij and eij , displacements were sampled at 1575 points within the range
22.4 km ≤ x, y ≤ 380.8 km, 179.2 km ≤ z ≤ 254.8 km.

Table 1. Settings for the two-layered half-space model

Domain size 0 km ≤ x, y ≤ 403.2 km
Layer 1 (E, ν) = (2.89GPa, 0.44), 250.176 km ≤ z ≤ 260.176 km
Layer 2 (E, ν) = (23.6GPa, 0.26), 0 km ≤ z ≤ 250.176 km
Loading Point (203.338 km, 203.448 km, 260.176 km)
Loads (1N, 0N, 0N), (0N, 1N, 0N), (0N, 0N, 1N)
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Fig. 1. Overview of the two-layered half-space model and the loading point.

Fig. 2 shows the mesh re�nement process. Fig. 2(a) displays only the elements
subjected to tetrahedral bisection, illustrating that re�nement initially occurred
around the loading point and spread over the domain after the mesh around
the loading point was re�ned. Fig. 2(b) shows the mesh after 15 iterations of
re�nement.

i=3 i=8

!"#$%&'()"%&*!"#

!$#

Fig. 2. (a) Elements subjected to re�nement during the 3rd and 8th iterations. (b)
Mesh after 15 re�nements for AFEM-GFL2 model, cut at x = 201.6 km, showing the
side containing x = 0km. The left panel shows the overview and the right panel shows
a close-up view around the loading point.

dij was computed from the sampled displacements and its distribution is pre-

sented in Fig. 3(a). The maximum value of dij at i = 15 is 0.014% and 0.028%
for AFEM-GFL1 and AFEM-GFL2, respectively, indicating that displacements
were converged through mesh re�nement. Similarly, eij was computed and its dis-

tribution is shown in Fig. 3(b). At i = 15, the value of eij is con�ned to 0.050%.
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It implies that convergent displacements for AFEM-GFL1,2 are consistent, sug-
gesting that high accuracy of the solutions obtained by AFEM-GFL.

Fig. 3. (a) Distribution of dij for AFEM-GFL1 and AFEM-GFL2. (b) Distribution of
eij . In both �gures, the value of each metric at each sample point is shown as a dot, with
square and triangle markers representing maximum and minimum values, respectively.

Mainly two patterns for convergence of the displacements were observed. Fig.
4 presents examples of each pattern, compared with displacements computed
using three meshes with uniform element sizes of 2.8 km, 1.4 km, and 0.7 km. At
sample points far from the loading point, as shown in Fig. 4(a), the AFEM-
GFL1 and AFEM-GFL2 results converged to the same value and the size of the
element containing the loading point has a dominant e�ect on the convergence.
For sample points near the loading point, as shown in Fig. 4(b), the two solutions
converged to slightly di�erent values. However, as indicated by the metric eij ,
these di�erences are small.

We compare the computational cost of analysis using the uniform mesh
0.7 km and AFEM-GFL1 in Table 2. The degrees of freedom for the AFEM-
GFL1's �nal mesh is no more than 1/100 of that for the uniform mesh 0.7 km.
Further signi�cant re�nement would be required to achieve convergence with uni-
form meshes and such analysis would necessitate even larger computational re-
sources, while high-accuracy convergent solutions were achieved with moderate-
scale computer cluster (320 CPU cores) by AFEM-GFL. This result highlights
the attractiveness of the method in terms of capability computing, although the
total elapsed time for it was large due to the repetitive �nite element analyses
and the mesh re�nement process.
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(a) (b)

AFEM-GFL1 AFEM-GFL2

uniform 2.8 km uniform 0.7 kmuniform 1.4 km

Fig. 4. y components of the displacement due to a load in x direction at sample
points are shown. (a) Displacement at (89.6 km, 89.6 km, 201.6 km). (b) Displacement
at (201.6 km, 201.6 km, 254.8 km).

Table 2. Comparison of the uniform mesh 0.7km and AFEM-GFL1. Supercomputer
Fugaku[13] and a Xeon Gold 6230-based CPU cluster were used for uniform 0.7 km and
AFEM-GFL1, respectively. The elapsed time for the uniform mesh includes the time
for mesh generation, partitioning, and �nite element analysis. One for AFEM-GFL1
includes, in addition to the above, the time for error estimation and mesh re�nement.

Processor # of CPU cores Elapsed time(hour) DoF

Uniform 0.7km A64FX 38400 2.6 9.9× 108

AFEM-GFL1 Xeon Gold 6230 320 22.3 7.3× 106

3.2 Crustal structure in Japan

Numerical experiments were conducted for a model of the crustal structure in
the Tohoku region of Japan. The Japan Integrated Velocity Structure Model
(JIVSM) [10], a uni�ed underground structure model of the Japanese islands,
provides a Digital Elevation Model (DEM) representing the layer structure in
the form of (latitude, longitude, elevation) and material properties of each layer.
We utilized these data to generate the crustal structure model. DEM data for
the longitude range 139.7 ◦E ∼ 142.7 ◦E and latitude range 37.4 ◦N ∼ 39.4 ◦N
were extracted from the JIVSM, and too thin layers near the ground surface was
deleted [11], then converted to a Cartesian coordinate system [6] to obtain a DEM
in the range of 0 ≤ x ≤ 240 km, 0 ≤ y ≤ 200 km, 0 ≤ z ≤ 206 km. Using this data,
meshes generated with the settings (ds, nk) = (0.625 km, 2) and (1.25 km, 1) were
used as initial meshes for AFEM-GFL1 and AFEM-GFL2 settings, respectively,
and 15 iterations of mesh re�nement were performed for both settings. Three
loading patterns of (1N, 0N, 0N), (0N, 1N, 0N), (0N, 0N, 1N) were applied to
each of the 16 points evenly distributed on the surface within the range 93 km ≤
x ≤ 172 km, 78 km ≤ y ≤ 144 km. Displacements sampled at 350 points within
the range of 60 km ≤ x ≤ 180 km, 60 km ≤ y ≤ 140 km, 40 km ≤ z ≤ 195 km
were used to evaluate dij and eij . Fig. 5 presents an overview of the model and
loading points.
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Fig. 5. Overview of the crustal structure model and the loading points.

Fig. 6 shows the mesh re�nement process. In Fig. 6(a), only the elements
subjected to tetrahedral bisection are displayed, showing a similar trend to the
setting in Section 3.1 where re�nement initially focuses on the loading points
and then spreads over the domain. Fig. 6(b) shows the �nal mesh for AFEM-
GFL2. The maximum aspect ratios in the �nal meshes for AFEM-GFL1 and
AFEM-GFL2 are 36.6 and 36.2, respectively, while those in the initial meshes
are 8.85 and 8.64. Although the maximum aspect ratio increased around 4 times
during mesh re�nement, no degenerate elements (e.g., aspect ratio greater than
1000) were generated even for the crustal structure model.

i=3 i=8

!"#

!$#

Fig. 6. (a) Elements subjected to re�nement during the 3rd and 8th iterations. (b)
Mesh after 15 re�nements for AFEM-GFL2 model, cut at y = 120 km, showing the
side containing y = 0km. The left panel shows the overview and the right panel shows
a close-up view around the loading point at x = 93.4 km, y = 100.0 km.
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Regarding the accuracy of the computed GFLs, Figs. 7(a) and (b) show the
distribution of dij and eij , respectively. For d

i
j , the maximum values at i = 15 are

0.02% and 0.04% for AFEM-GFL1 and AFEM-GFL2, respectively. As for eij , the
maximum value was 0.60% at i = 15. This con�rms that even when targeting
complex structure models, accurate GFL can be computed by AFEM-GFL from
the perspective of dij and eij . However, compared to the setting in Section 3.1,

the reduction of eij stopped earlier, and the residual of eij after 15 iterations was
larger. One reason might be that while the geometry of the layer structure was
accurately represented by the mesh in the two-layered half-space model, it was
approximated when generating the initial mesh for the crustal structure model.
Although the algorithm used in this study cannot improve geometry represen-
tation through mesh re�nement, using such methods that correct geometries
referring the original DEM when adding nodes during tetrahedral bisection may
potentially reduce eij further.

Fig. 7. (a) Distribution of dij for AFEM-GFL1 and AFEM-GFL2. (b) Distribution of
eij . In both �gures, the value of each metric at each sample point is shown as a dot, with
square and triangle markers representing maximum and minimum values, respectively.

Furthermore, the accuracy of crustal deformation computed from the ob-
tained GFLs was also evaluated. Here, we calculated the displacements at the
16 loading points due to a point source at position (62 km, 102 km, 162 km) with a
moment tensor of mxx = myy = mzz = mxy = myz = 0,mzx = 1.0× 1019 N ·m.
The point source was approximated as a set of forces acting on vertices of a cube
with a side length of 5 km [4], and displacement was obtained by calculating the
convolution with the GFLs. Similar to the metrics in equations (9) and (10), the
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accuracy of point source response was evaluated using metrics de�ned as follows:

d̃ij =

√∑3
k=1

(
ui
j,k − ui−1

j,k

)2

√∑3
k=1

(
ui−1
j,k

)2
(11)

ẽij =

√∑3
k=1

(
ui1
j,k − ui2

j,k

)2

√∑3
k=1

(
ui1
j,k

)2
. (12)

Here, in Eq. (11), ui
j,k represents the k-component of the point source re-

sponse at the loading point j obtained using the GFL after i-th re�nement.
In Eq. (12), ui1

j,k and ui2
j,k represent the responses obtained using the GFL in

AFEM-GFL1 and AFEM-GFL2 settings, respectively. The distribution of d̃ij
and ẽij are shown in Figs. 8(a) and (b), respectively. The maximum values of dij
at i = 15 is 0.0008% for AFEM-GFL1 and 0.001% for AFEM-GFL2, con�rm-
ing that the point source response was converged as well as the GFL. As for
ẽij , the maximum value is 0.79% at i = 15, con�rming that the two responses
from AFEM-GFL1 and AFEM-GFL2 are aligned. Evaluating the accuracy of
the GFLs at the source point, the maximum value of e15j is 0.2%. The order of

magnitude of the maximum value of e15j and ẽ15j is consistent, suggesting that
the point source responses were computed with a similar level of accuracy as the
GFLs. In this study, the accuracy of the source response is evaluated with the
source representation �xed, but future works should consider the impact of the
source representation (e.g., the size of the cube for the point source).

4 Conclusion

In this study, we presented a method called AFEM-GFL for calculating GFLs
using adaptive mesh re�nement with the quantitative accuracy evaluation of so-
lutions. This method generates adaptive meshes suitable for GFL calculations
even for models with complex layer structures and allows the quantitative evalu-
ation of accuracy from the perspectives of solution convergence and consistency
of solutions obtained from di�erent initial meshes.

Numerical experiments on a two-layered half-space con�rmed that high-
accuracy convergent solutions can be obtained using this method, as both metrics
dij and eij became small. While a convergent solution could not be obtained even

with 9.9 × 108 degrees of freedom using a uniform mesh, the degrees of free-
dom in the �nal mesh of AFEM-GFL were 7.3 × 106, enabling execution on a
moderate scale computer cluster. This feature shows the superiority of the pro-
posed method over analysis using uniform meshes, although the elapsed time for
AFEM-GFL was longer than analysis using uniform meshes. In numerical ex-
periments targeting the realistic crustal structure model, it was con�rmed that
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Fig. 8. (a) Distribution of d̃ij for AFEM-GFL1 and AFEM-GFL2. (b) Distribution of
ẽij . In both �gures, the value of each metric at each sample point is shown as a dot, with
square and triangle markers representing maximum and minimum values, respectively.

this method is robust, assuring a certain level of accuracy even for models with
the complex geometry. It was also veri�ed that point source responses can be
calculated with similar accuracy to that of the obtained GFLs.

We can obtain quality GFLs using the proposed method. Those will be uti-
lized for reliable source estimation and enhancing our understanding of earth-
quakes.
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