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Abstract. This paper tackles the challenge of adapting HPC codes to
RISC-V architecture for real-world applications with memory-bound nu-
merical codes. The Multidimensional Positive Definite Advection Trans-
port Algorithm (MPDATA) application is the code we study as a use
case. This work explores whether the methodology developed in our pre-
vious works for Intel and AMD x86 architectures can address perfor-
mance trade-offs and bottlenecks of multicore RISC-V computing plat-
forms while executing the memory-bound MPDATA code. The explored
platforms include: (i) Banana Pi BPI-F3 low-power platform, and (ii)
Milk-V system with the 64-core Sophon SG2042 processor. Special em-
phasis is given to efficient vectorization and using lower-precision com-
putations. Besides performance, energy consumption is studied as well.

Keywords: RISC-V · SG2042 · SpacemiT K1 · CFD · MPDATA appli-
cation · memory-bound codes · porting applications

1 Introduction

RISC-V is an open standard Instruction Set Architecture (ISA) that enables the
royalty-free development of CPUs and a common software stack [6]. Following
this community-driven ISA standard, a very diverse set of CPUs suited to a
range of workloads have been, and continue to be, developed. While RISC-V
has already become popular in some fields, it has yet to gain traction in general-
purpose computing, including HPC and AI/ML. In particular, recent advances in
RISC-V make it a more realistic proposition for HPC workloads than ever before.
An example is the vectorization extension, which gives essential performance
advantages for HPC codes but was only standardized in early 2022 as RVV 1.0,
so we are only now seeing CPU designs fully implementing this extension [6], [3].

At the same time, the performance of publicly available RISC-V CPUs is
still behind even mobile x86 and ARM CPUs, but developments in this area
are progressing rapidly. Since the RISC-V software stack includes all necessary
tools for application development, it is of considerable interest to study porting
real-life codes to computing platforms based on RISC-V. Knowledge gained in
this way will allow application programmers to identify bottlenecks in existing
approaches to mapping and optimizing codes for HPC architectures, considering
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the characteristics of available computing platforms and the software stack sup-
porting them. Furthermore, the lessons learned in this way can provide helpful
feedback for future hardware and software solutions developers.

This work tackles the challenge of adapting HPC applications to RISC-V
platforms for real-life problems with memory-bound codes, for which memory
performance is the main factor affecting computation time [17]. The code we
study as a use case implements the Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA) - a CFD (computational fluid dynamics) al-
gorithm that allows numerical modeling of advection transport phenomena [10].

The paper is organized as follows. Related works are discussed in Section 2.
Sections 3 and 4 outline the studied RISC-V platforms and MPDATA appli-
cation, respectively. Section 5 introduces the parallelization methodology for
MPDATA on RISC-V platforms, while the vectorization of codes is described
in Section 6. The performance evaluation of MPDATA on RISC-V is presented
in Section 7. Section 8 deals with using single precision and evaluating energy
efficiency, while Section 9 concludes the paper.

2 Related Works

In recent years, the research community has been actively investigating the capa-
bilities of the RISC-V architecture. Most of the papers focus on the development
of the ISA, and applications of RISC-V in some areas like embedded and edge
computing, with less attention paid to optimizing the performance of parallel
codes on RISC-V CPUs. However, with the development of high-performance
RISC-V platforms, bridging the gap between the HPC community and RISC-V
technology has become increasingly relevant.

At the moment, not many studies have been published regarding perfor-
mance analysis and optimization on RISC-V CPUs. In particular, an overview
of RISC-V vector extensions and the corresponding computing platforms (at the
end of 2022) is given in [6]. In [11], the authors present benchmarking results
of OpenFOAM, one of the most widely used frameworks for scientific simula-
tions, comparing the performance and power consumption across devices with
ARM and RISC-V architectures. However, only a single-core RISC-V processor
is tested, and the analyzed CFD code is not subject to optimization. Paper [19]
explores an important computing kernel, the Fast Fourier Transform (FFT),
demonstrating that RISC-V-specific optimizations can significantly speed up cal-
culations. In [3], the authors optimized a production CFD code kernel to run
efficiently on the FPGA emulator of a RISC-V CPU with long-vector capabili-
ties. Thus, the studies of various authors demonstrate the significant potential of
RISC-V technology for HPC while emphasizing the need for new developments
in hardware and software optimization methods, using real-world applications.

This work studies MPDATA, a CFD algorithm that represents a general ap-
proach to modeling complex geophysical flows from micro to planetary scales and
one of the main parts of the EULAG multiscale fluid model [9]. In our previ-
ous papers [15, 12, 13], we proposed an adaptation methodology that allowed us

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_11

https://dx.doi.org/10.1007/978-3-031-97632-2_11
https://dx.doi.org/10.1007/978-3-031-97632-2_11


AdaptingMemory-Bound CFD Computations to RISC-V Architecture 3

to develop the automatic transformation of the memory-bound MPDATA code.
The resulting MPDATA code has been carefully optimized for achieving scal-
able, high performance on ccNUMA multicore platforms with Intel processors of
various generations [13, 14] and AMD EPYC Rome architecture [16].

However, there is still a lack of RISC-V-specific optimizations of real-life
stencil-based parallel codes, including MPDATA. This research has been con-
ducted in this direction, exploring whether the proposed methodology can ad-
dress performance trade-offs and bottlenecks of resource-constrained multicore
RISC-V platforms while executing the memory-bound MPDATA code. The stud-
ied platforms are based on two state-of-the-art commodity CPUs with opposing
characteristics in terms of performance and power requirements; they also differ
in the vector extension version. While the first CPU has not been covered in the
literature so far, the second one has only been studied in papers on optimizing
FFT [19] and in works published by Nick Brown et al. on benchmarking the
SG2042 CPU using RAJA and NPB suites [5].

3 RISC-V Computing Platforms

Banana Pi BPI-F3 Low-Power Platform
Banana Pi BPI-F3 is an industrial-grade RISC-V development board powered

by the SpacemiT K1 RISC-V CPU [2], including eight 64-bit cores operating at
a frequency of 1.05 GHz and providing an eight-stage in-order dual-issue pipeline
execution. This CPU, launched in late 2023, adheres to the RISC-V 64GCVB ar-
chitecture and RVA22 standard. Despite a relatively low performance, the attrac-
tiveness of this board for the HPC area is that SpacemiT K1 is the world’s first
commodity processor supporting the vector extension RVV 1.0. SpacemiT K1
provides a 256-bit vector length VLEN with a 128-bit x 2 execution width.

Apart from the in-order execution instead of the out-of-order one adopted in
x86 CPUs, the main distinctive feature of the RISC-V platform is a much simpler
on-chip memory hierarchy with only L1 and L2 caches, without an L3 cache.
Every core has L1 instruction and data caches, each with 32KB. The shared
1MB L2 cache is divided into two 512KB banks. The board integrates 4GB of
LPDDR4-2666 memory (up to 16GB) with a single memory controller, providing
a modest bandwidth of up 10.6GB/s. At the same time, the important advan-
tage of the platform is the use of the low-power CPU with a TDP of ∼3-5W [2].

Milk-V Pionier Platform with 64-core Sophon SG2042 Processor
Milk-V Pioneer is a developer motherboard based on the 64-core Sophon

SG2042 RISC-V CPU in a standard microATX form factor [1]. SG2042 is the first
mass-produced, commodity-available, high-core count RISC-V CPU designed for
HPC workloads [5], [18]. It runs at 2GHz and is organized in 16 clusters of four
XuanTie C920 cores. Clusters are connected through the network-on-chip (NoC)
with a 2D mesh topology. Every 64-bit core, designed by T-Head, adopts a 12-
stage out-of-order multiple-issue superscalar pipeline execution, supporting the
RV64GCV instruction set.
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Each C920 core has L1 instruction and data caches, each with 64KB, while
1MB of L2 cache is shared across a cluster of four cores. All cores in the CPU
share 64 MB of the system-level L3 cache, composed of 16 slices connected
through the NoC. SG2042 integrates four DDR4-3200 memory controllers and
32 lanes of PCIe Gen4. The board has 128GB of DDR4-3200 memory, providing
a maximum bandwidth of 102.4 GB/s - ten times higher than the previous
one. At the same time, the board consumes much more energy since the typical
power demand of SG2042 is 120W [1]. Finally, unlike the SpacemiT K1 CPU, the
SG2042 C920 core provides only version 0.7.1 of the vectorization extension with
a vector width of 128 bits. What is important is that, opposite to version 1.0,
mainline compilers like gcc and Clang do not support RVV 0.7.1.

4 Overview of MPDATA

MPDATA corresponds to the second-order accurate nonoscillatory iterative algo-
rithms and is defined using a finite-difference scheme over structured rectilinear
grids. MPDATA solves the advection of a non-diffusive quantity Ψ in a flow field:

∂Ψ/∂t + div(V Ψ) = 0, (1)

where V is the velocity vector [8]. In this work, we focus on modeling 3D ad-
vection problems, when MPDATA is defined in a 3D domain of sizes n×m× l
according to i−, j−, and k−dimensions, respectively.

In general, MPDATA is intended to run long simulations that engage even
many thousands of time steps. Each step takes five 3D arrays as input and
returns a single 3D array reused in the next step. Each step performs a series of
17 kernels, depending on each other [13]. Every kernel is a 3D stencil code that
updates all elements of its output array using a particular pattern.

5 Parallelization of MPDATA on RISC-V Platforms

Methodology for Adapting MPDATA to Multicore Architectures
MPDATA executes a set of stencil kernels with heterogeneous patterns. In

the basic version of the parallel code, kernels are executed sequentially, and each
kernel is processed in parallel using OpenMP. Data parallelism and vectorization
are employed to distribute kernels across cores and vector units. Particularly,
#pragma omp for directive across outer-most loop (i−dimension) is applied to
split loop iterations among cores, and #pragma omp for simd directive allows
us to incorporate vectorization along inner-most loop (k−dimension).

Since the basic version is not optimized for cache reusing, its performance is
limited by the main memory bandwidth. Consequently, the low operational in-
tensity of each kernel does not allow us to utilize modern CPUs well. In our works
[15, 12], suitable optimizations were proposed to exploit multicore ccNUMA plat-
forms more efficiently. The resulting methodology for adapting MPDATA to such
platforms consists of the following optimizations [13]:
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1. (3+1)D decomposition explores spatial blocking across kernels, using over-
lapped tiling with redundant computations. Moreover, loop fusion is used to
group all kernels into five packages of kernels. Besides increasing the com-
putational intensity, this approach reduces the main memory traffic and
efficiently utilizes L3 and L2 levels of the cache hierarchy.

2. Partitioning cores into work teams relieves the overhead of data traffic within
the cache hierarchy of the ccNUMA system by setting groups of cores –
MPDATA work teams, also called islands of cores. The price for mitigating
this overhead is the replication of some computations.

3. Data-flow synchronization – the aim is to reduce the cost of synchronization
by synchronizing only interdependent threads following the data dependen-
cies between the kernels instead of using the barrier approach.

4. Vectorization of MPDATA kernels – possible approaches include automatic
vectorization, using intrinsics, or even assembly.

In order to parallelize the MPDATA workload across computing resources, the
MPDATA domain is evenly split into S sub-domains of size m

S × n × l, pro-
cessed in parallel by S hardware teams of cores (islands of cores) available in a
given ccNUMA platform. Every team processes a given sub-domain following the
(3+1)D decomposition. Each sub-domain is partitioned into blocks with a size
that enables efficient utilization of L3 and L2 caches. The successive blocks are
processed sequentially, one by one. Each block exploits data parallelism across i−
and j−dimensions to distribute workload among CT cores of a given work team.
As a result, each MPDATA block is partitioned into a set of CT sub-blocks. Fi-
nally, the vectorization is performed along k−dimension for appropriate chunks
of data arrays corresponding to the sub-blocks.

Transferring the Methodology to RISC-V Platforms
The expected use of the presented methodology depends on the platform

features related primarily to the processor architecture. The lack of ccNUMA
domains in the SpacemiT K1 CPU and its simple memory hierarchy with only
two-level caches do not justify the usage of the islands-of-cores partitioning. At
the same time, an important advantage of this CPU is the possibility of using a
compiler-supported vectorization, either automatic or with intrinsics.

Unlike SpacemiT K1, the SG2042 CPU has the three-level cache hierar-
chy with a reasonably large L3 cache, and what is important is that this last-
level cache is divided into slices distributed among four-core clusters connected
through the network-on-chip with 4×4 mesh topology. The network is also used
to connect four DD4 memory channels. These architecture features justify the
need to consider all four optimizations the adaptation methodology provides,
including the islands-of-cores partitioning. Moreover, it is advisable to study the
scalability of MPDATA execution depending on how the MPDATA workload
is distributed across 16 clusters of SG 2042. Finally, the lack of compiler sup-
port for version 0.7.1 of the vector extension forces us to incorporate manual
vectorization in assembly language to utilize the resources of vector hardware.
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6 Vectorization using Various RVV Extensions

Using vector (or SIMD) unit has yielded notable performance improvements
for Intel and AMD processors [13]. In RISC-V processors, the vector (or "V")
extension of ISA is dedicated to supporting vectorization. The studied platforms
implement different versions of this extension - either the obsolete 0.7.1 version
for the SG2042 CPU or the up-to-date RVV 1.0 extension for SpacemiT K1,
which forces us to use different approaches. In both cases, the vectorization is
carried out for all 17 MPDATA kernels grouped into five packages [12, 13].

SG2042 with RVV 0.7.1 Extension
Due to difficulties in finding a compiler that supports at least vector in-

trinsics for this CPU, we use a manual vectorization of code fragments written
in assembly. For this aim, the gcc compiler in version 9.2.0 is used, allowing
us to compile the assembly code corresponding to the xtheadvector extension
adopted by this processor. Here, this gcc compiler is used exclusively for com-
piling assembly code fragments, while the remaining C++ code is compiled by
the gcc 13.2.0 compiler, which also handles the linking stage for the entire code.

Fig. 1 presents an example of vectorization in assembly language for a func-
tion corresponding to a fragment of kernel 4. The code includes three stages:
(i) initialization, (ii) processing loop, and (iii) updating pointers and loop con-
trol. First, the processing range for a given thread is initialized with lCoreStart
passed to t0 register. The loop begins with calculating the remaining range to
be processed (t1 = lCoreEnd - t0) and setting the vector length VL in t2 reg-
ister. Next, the kernel operations are performed: loading data from memory
(tmp_A[k] and tmp_A[k+1]) into vector registers v1 and v2, performing sub-
traction v3 = tmp_A[k+1] - tmp_A[k], and then writing the result to tmp_f3
array in memory. In the third stage, the data pointers (tmp_A and tmp_f3) are
advanced by the number of processed elements, while index t0 is incremented
by VL. The loop is repeated until the entire range has been processed. The other
functions being vectorized have a similar structure, but typically, they handle
more arguments (up to 24) and perform more complex operations.

A major challenge for assembly vectorization is optimally using registers to
avoid accessing memory. To this end, unused registers such as s0 and gp are
leveraged. Their states are saved on the stack before the function begins and
restored upon completion.

SpacemiT K1 with RVV 1.0 Extension
Since the state-of-the-art versions of Clang and gcc compilers incorporate

vectorization support for the RVV 1.0 extension, it becomes possible to burden
a compiler with automatic code vectorization. The codes of MPDATA kernels
must be suitably modified for this aim - in a way similar to x86 [13]. Clang direc-
tives, including #pragma clang loop vectorize(enable), are used to enforce
vectorization and pass additional configuration parameters. We also leverage
compiler-supported vectorization with intrinsics to improve the performance ob-
tained by auto-vectorization. This solution makes programming vector opera-
tions much more productive than using assembly.
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# Arguments:
# a0: pointer to tmp_A (input)
# a1: pointer to tmp_f3 (output)
# a2: lCoreStart (starting index)
# a3: lCoreEnd (end index)
# Initialization
mv t0, a2 # t0 <- lCoreStart (current index)
# Processing loop

loop:
sub t1, a3, t0 # t1 <- lCoreEnd - t0
vsetvli t2, t1, e64 # Set VL (Vector Length) for 64-bit elements
# Load input data
vle.v v1, (a0) # v1 <- tmp_A[k]
addi t3, a0, 8
vle.v v2, (t3) # v2 <- tmp_A[k+1]
vfsub.vv v3, v2, v1 # v3 <- tmp_A[k+1] - tmp_A[k] = v2 - v1
vse.v v3, (a1) # Store the result into tmp_f3
# Updating pointers
slli t4, t2, 3 # t4 <- VL * 8 (data size in bytes)
add a0, a0, t4 # Advance tmp_A pointer by VL * 8 bytes
add a1, a1, t4 # Advance tmp_f3 pointer by VL * 8 bytes
add t0, t0, t2 # Increment t0 index by VL
# Loop control
blt t0, a3, loop # If t0 < lCoreEnd, repeat the loop
ret # Return from the function

Fig. 1: Vectorization of a function implementing vector subtraction.

7 Performance Evaluation of MPDATA on RISC-V

7.1 Evaluation Metodology

For Banana Pi BPI-F3, the experiments presented in this section focus on evalu-
ating the influence of optimization steps on the execution time of MPDATA.
Besides the basic, non-optimized code, the studied versions of MPDATA em-
brace the (3+1)D decomposition, data-flow synchronization, and three variants
of vectorization: (i) automatic, (ii) using intrinsic, and (iii) in assembly. The mea-
sured execution times are obtained for the Clang compiler in version 20.0.0git.
They correspond to 100 time steps and 3D grid of size 512 × 480 × 64.

For the second platform, the range of experiments is much broader. First,
the memory throughput is tested, followed by benchmarking the platform per-
formance and scalability with the NPB (NAS Parallel Benchmark) test suite.
Then, the impact of optimizations on performance is tested together with evalu-
ating the scalability of codes, assuming allocation of 1, 2, 3, or 4 threads per each
four-core cluster of SG2042. While gcc 9.2.0 is used only for compiling assembly
parts, the gcc 13.2.0 compiler handles compiling and linking for the entire code.
For both platforms, computations are performed in double precision.
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Table 1: Execution time for running different versions of MPDATA code on
Banana Pi BPI-F3, where Std denotes standard deviation.

Code version Tmean [s] Tmed [s] Std TMin[s] TMax[s]
Basic 361.9 383.7 37.3 316.5 397.6
(3+1)D 235.2 236.1 4.15 229.7 241.3
(3+1)D + auto-vec 203.5 205.1 4.2 197.4 210.1
(3+1)D + intr vec 174.1 172.9 4.5 168.9 182.2
(3+1)D + asm vec 165.5 165.0 4.3 158.8 171.9
(3+1)D + df synchr 216.7 217.5 3.4 211.4 220.0
(3+1)D +df synchr +auto-vec 184.4 183.7 3.9 179.4 189.9
(3+1)D +df synchr +intr vec 160.4 161.4 3.5 154.7 166.4
(3+1)D +df synchr +asm vec 157.1 157.6 6.1 146.3 167.2

7.2 Evaluation of Banana Pi BPI-F3 Platform

Table 1 presents execution times for nine versions of MPDATA, starting with
the non-optimized code and ending with three codes implementing (3+1)D de-
composition together with the data-flow synchronization (denoted as df synchr)
and vectorization using either auto-vectorization (auto-vec), intrinsic (intr vec)
or assembly (asm vec). For each version, we provide the mean Tmean and median
Tmed values of the execution time obtained for 10 repeated measurements, giving
results in the range from Tmin to Tmax.

The results in Table 1 prove the effectiveness of the proposed optimizations.
The (3+1)D decomposition achieves the most significant effect, which decreases
the median execution time by 1.63 times. Subsequently, even auto-vectorization
is more productive than data-flow synchronization (DFS). At the same time,
leveraging assembly-based vectorization yields considerably better results than
auto-vectorization, almost avoiding the usage of DFS. In fact, vectorization in
assembly without DFS permits decreasing the median execution time 2.33 times
against the basic version, while mixing DFS with assembly-based vectorization
speeds up MPDATA 2.43 times.

7.3 Evaluation of Milk-V Pionier Platform

Benchmarking the Platform
Measurements of memory throughput (in MB/s) for various thread (core) num-
bers (Table 2) show that the total throughput rises only slightly with increas-
ing the thread number, which radically reduces the throughput per thread -
e.g., from 2591.9 MB/s (16 threads) to 738.8 MB/s (64 threads) for daxpy, or
3.5 times. This decrease in throughput per thread with scaling thread number
correlates with the scalability of codes from the NPB suite (Fig.2). Only embar-
rassingly parallel computations are scalable up to 64 cores. Some codes feature
good scalability up to 32 cores, with a slight growth for 48 cores (LU) or a fall
after 32 cores (CG). Finally, benchmarks such as MG provide only a slight per-
formance growth for 32 cores compared to 16, with a fall afterward.
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Table 2: Total throughput B(P) and per thread B1(P) in MB/s for P=16 and
P=64 threads and various functions measured on SG2042.

Function B(16) B1(16) B(64) B1(64)

Copy 36215.8 2263.5 44940.7 702.2
Scale 36438.0 2277.4 44874.6 701.2
Add 40847.4 2553.0 47626.5 743.2
Triad 38731.5 2420.7 45744.6 714.8
Daxpy 41470.4 2591.9 47285.8 738.8

Fig. 2: Scalability of selected NPB codes (class C) on SG2042, where EP, LU, CG
and MG are for embarrassingly parallel, LU decomposition, conjugate gradient
and multigrid codes, respectively.

Evaluating Scalability and Efficiency of Optimization Steps
Table 3 shows execution times for various core numbers and four versions of
MPDATA: the basic, non-optimized code, and three codes with growing opti-
mization levels - from using only the (3+1)D decomposition, through leveraging
also the DFS step, to the code including vectorization as well. We have not
yet been able to leverage the islands-of-cores optimization step to speed up the
computation. Consequently, each work team includes only a single core. Taking
advantage of this optimization will be the subject of our future work.

The median values Tmed from Table 3 are the basis of our further analysis.
They are also used to calculate the performance of MPDATA codes (in Gflop/s)
presented in Fig. 3. The obtained results once again confirm the effectiveness of
the proposed optimizations. While the basic code is not scalable, yielding only a
slight performance gain when going from 16 to 32 cores, with a radical slowdown
afterward, the resulting optimized code provides quite good scalability, reducing
the median execution time by 1.5 and 2.34 times for 32 and 64 cores, respectively,
when compared to 16 cores. Even more appealing is the final speedup SF yielded
by the fully optimized code against the basic one: SF = 47.12/6.60 = 7.14 times.

The analysis of the impact of various optimizations on performance is of con-
siderable interest. This impact, measured by the speedup achieved by a given
code against the code with a lower level of optimization, is changing with in-
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Table 3: Execution times for running various MPDATA versions on SG2042.
Code version P Tmean [s] Tmed [s] Std Tmin[s] Tmax[s]

Basic 16 51.85 51.38 1.31 49.86 54.39
Basic 32 47.33 47.12 1.26 45.75 49.19
Basic 48 94.85 90.97 14.45 79.42 116.76
Basic 64 128.59 123.56 20.15 104.89 168.96
(3+1)D 16 28.20 28.34 0.33 27.52 28.50
(3+1)D 32 20.04 20.33 1.53 16.94 21.94
(3+1)D 48 20.80 21.53 1.56 17.76 22.17
(3+1)D 64 23.70 16.24 16.36 9.18 61.30
(3+1)D + DFS 16 25.49 25.55 0.18 25.23 25.71
(3+1)D + DFS 32 15.22 15.22 0.23 14.85 15.62
(3+1)D + DFS 48 13.54 13.50 0.55 12.88 14.47
(3+1)D + DFS 64 9.18 7.92 2.78 7.87 14.82
(3+1)D + DFS + vec 16 15.7 15.7 0.2 15.5 16.0
(3+1)D + DFS + vec 32 10.5 10.5 0.2 10.3 10.9
(3+1)D + DFS + vec 48 10.4 9.9 1.4 8.9 13.2
(3+1)D + DFS + vec 64 10.55 6.60 6.63 6.50 22.90
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Fig. 3: Performance (in Gflop/s) of different versions of MPDATA on SG2042.

creasing the core number. Thus, the impact of the (3+1)D decomposition is in-
creasing from 1.9 times on 16 cores, through 2.32 times on 32 cores, to 7.6 times
on 64 cores. The impacts of two subsequent optimizations are interrelated. While
on 16 cores, switching on DFS speeds up MPDATA only SDFS = 1.11 times,
and adding vectorization allows us to shorten the execution time by Svec =1.63
times, for high numbers of cores, these speedups are as follows: SDFS = 1.34,
Svec = 1.45 on 32 cores, and SDFS = 2.05, Svec = 1.2 for 64 cores. The increased
impact of DFS can be explained by the performance bottlenecks of NoC which
heavily favor increasing computing locality achieved by DFS. At the same time,
the reason for the decreased impact of vectorization lies in the limited memory
bandwidth.
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Performance analysis based on the Roofline model
Fig. 4 presents the preliminary Roofline model [16] built to analyze MPDATA
performance on the Milk-V platform. This model expresses the attainable perfor-
mance AP (in Gflop/s) as a function of the operational intensity O (in flop/B).
Fig. 4 shows that the proposed optimizations allow us to increase the intensity
significantly. While for 17 kernels of the basic code, 0.14 ≤ O ≤ 0.54, we have
0.72 ≤ O ≤ 1.04 for five packages of the optimized code. Multiplying the inten-
sity O by the measured memory bandwidth BDRAM = 47.6 GB/s permits us to
estimate the range of AP from 34.6 to 58.1 Gflop/s. Here AP = 39.5 Gflop/s for
P1 package, which takes ∼40% of the total execution time, and AP = 58.1 Gflop/s
for P3 package, which takes only ∼15% of the total time.

Comparing these estimations of AP with the performance MP = 57.7 Gflop/s
measured on 64 cores (Fig. 3), we conclude that, like x86 architectures [13, 16],
the packages P2 − P5 leverage the L3 cache. Its bandwidth is significantly high,
leading to an adequate increase in the estimation of the attainable performance
AP. Our future work will focus on reliably incorporating the impact of L3/L2
cache performance characteristics into the model.
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Fig. 4: The Roofline model for the double-precision MPDATA on Milk-V.

8 Using Single Precision for Improving Performance and
Evaluation of Energy Efficiency

Using Single Precision
Paper [7] showed that in some application domains, using the single precision
format of data instead of double precision is enough to provide the required accu-
racy. This transition to lower precision increases the performance of computing
units and allows more efficient utilization of the available memory bandwidth.

Fig. 5 compares the median execution time of the basic and fully optimized
single-precision codes on SG2042. One can conclude that while using single preci-
sion for the basic code allows us only to slightly shorten the execution time - from
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Fig. 5: Performance of single-precision codes on SG2042 versus double-precision.

T d
b (32) = 47.12 s for double precision to T s

b (32) = 40.0 s (both values achieved on
32 cores), the optimized code is quite scalable, accelerating the execution by 1.67
and 2.54 times for respectively 32 and 64 cores when compared to 16 cores. Inter-
estingly, unlike the double-precision code, the contribution of DFS to this acceler-
ation decreases with scaling the core number while the contribution of vectoriza-
tion grows. Consequently, the final speedup SF achieved by the fully optimized
code versus the basic one is given by SF = T s

b (32)/T
s
o (64) = 40.0/3.65 = 10.96.

An even more practically interesting result is that the transition from double
to single precision in the optimized code permits improving the performance by
the ratio of T d

o (64)/T
s
o (64) = 6.60/3.65 = 1.80, i.e., slightly less than twice.

Evaluation of Energy Efficiency
By reducing the execution time, the proposed optimizations also allow us to
decrease the energy consumed by MPDATA [14, 16]. We employ the Yokogawa
WT310 digital power meter to obtain accurate and reliable measurements of the
energy and power consumed by the tested platforms. The power meter passes
the power to the platform under the load and implements measurements in real
time. The USB interface and YokoTool software allow us to collect data without
a noticeable influence on energy/power measurements.

Fig. 6 summarizes the measurement results for double precision. For both
platforms, the proposed optimization improves computations’ energy efficiency
significantly. These improvements are in line with the reduction in execution
time. At the same time, energy gains can be noticeably higher than time reduc-
tions. For example, for 64 cores running on Milk-V Pionier, the energy consump-
tion is decreased by more than 11.5 times compared to the basic code, while the
code is executed only 7.14 times shorter. What is also interesting is that the
energy consumed by Milk-V is decreasing with the increasing number of cores.
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Fig. 7: Average power consumption in watts for double-precision versions of
MPDATA on the Milk-V platform.

In particular, the energy consumed for 64 cores is 1.79 and 1.36 times lower than
the energy required for 16 and 32 cores, respectively.

We also compare the energy efficiency (in MFlop/s/W) of MPDATA codes
for both platforms. While Banana BPI-F3 beats the second platform for eight
cores, already by using 32 cores Milk-V Pionier catches up with BPI-F3, and
by exploiting 64 cores Milk-V beats the opponent by 36%. The energy efficiency
evaluation is finished by analyzing the average power consumption of MPDATA
versions on both platforms. This analysis shows that BPI-F3 consumes practi-
cally the same power for all versions - about 8.3 W. The power consumed by
Milk-V is much higher (Fig. 7). It starts with about 85 W for all versions run-
ning on eight cores, while already for 32 cores, we can observe some increase in
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average power consumed by more optimized versions of MPDATA compared to
the basic one. This increase is particularly visible for 64 cores when the average
power consumption increases from about 100 W for the basic version to about
140 W for the most optimized code.

9 Conclusions and Future Work

The RISC-V architecture is rapidly expanding. The current level of infrastruc-
ture development allows porting state-of-the-art software onto existing RISC-V
platforms and identifying the most promising RISC-V-specific approaches to
improving performance. In this paper, we tackle the challenge of adapting HPC
codes to RISC-V architecture for real-world applications with memory-bound
numerical codes such as MPDATA CFD application. Our findings can be sum-
marized as follows:

1. We demonstrate that our optimization methodology developed previously
for Intel and AMD x86 architectures can efficiently address performance
trade-offs and bottlenecks of two resource-constrained, multicore RISC-V
platforms while executing the memory-bound MPDATA code.

2. To efficiently utilize the vector hardware of the considered CPUs, besides
using the auto-vectorization for the SpacemiT K1 CPU, we develop a manual
vectorization of MPDATA codes for both versions of the RVV extension and
different numerical precisions.

3. The experimental evaluation of MPDATA codes on the Sophgon SG2042
CPU shows that, unlike most tests from the NPB test suite and the basic
MPDATA code, our optimized code is scalable up to all 64 cores of this CPU.

4. In double precision, the code optimizations allow us to speed up computation
more than 7 times compared to the original code. For single precision, this
speedup is even higher, exceeding 10 times.

5. The experimental evaluation of energy consumption demonstrates convinc-
ingly the energy savings achieved by the code optimizations performed for
both platforms. In particular, on the Milk-V Pionier platform, energy con-
sumption is reduced radically - by more than 11 times.

6. The evaluation of energy efficiency shows that while for eight cores, the
Banana BPI-F3 low-power platform beats the Milk-V Pionier platform by
more than two times, already by using 32 cores, Milk-V catches up with
BPI-F3, and by exploiting 64 cores, Milk-V beats the opponent by 36%.

Below, we outline three possible directions for future work. The first one
concerns using the islands-of-cores step in the optimization methodology, as well
as including the L3/L2 cache performance characteristics in the performance
analysis of Section 7. The second direction involves porting other real-life appli-
cations, including ML/AI workloads such as Bayesian network learning consi-
dered in paper [4]. The third direction concerns exploiting long vectors [3] offered
by upcoming RISC-V platforms.
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