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Abstract. It would not be an exaggeration to say that we live in the era
of transformers. Due to the great results of generative models for video
prediction, spatio-temporal data of various kinds are usually treated as
video-like sequences - and this is a good assumption for many problems.
However, we want to argue that transformer-based prediction is not the
best option for some spatio-temporal cases with regular grid and strong
periodicity (since most discussions about the limitations of transformer
applicability focus only on time series).
In the paper, we considered the task of sea ice forecasting and an-
alyzed two transformer-based architectures (TimeSformer and SwinL-
STM) against the proposed baseline - a lightweight convolutional net-
work with different setups of convolutional layers (2D and 3D). Exper-
iments for long-term forecasting of Arctic seas show that transformers
do not reproduce the annual dynamics of sea ice. At the same time, the
CNN-based solutions allow to outperform the existing state-of-the-art
numerical (SEAS5) and data-driven (IceNet) forecasts, with a quality
improvement of up to 30% in the mean absolute error and up to 10%
in the structural similarity index. A similar experiment is provided for
the synthetic example of video data. Due to the analysis of the obtained
results, this problem is caused by the nature of the model and the data
and can be faced in many scientific and industrial tasks outside sea ice.
Code and supplementary materials for this research are available on
GitHub: https://github.com/ITMO-NSS-team/sea_ice_transformers.

Keywords: sea ice concentration · transformers · CNN · spatio-temporal
data · long-term forecasting.

1 Introduction

The discussion on the limitations of the applicability of transformers is widely
presented in the literature [25], especially for the forecasting of time series. How-
ever, for the broad class of spatio-temporal tasks (e.g. video prediction), trans-
formers are considered as the basis of almost any state-of-the-art model. One of
the most challenging spatio-temporal problems for AI is sea ice forecasting [12].

Since spatio-temporal data have similarities with a video sequence and its
forecasting can be considered as a video prediction task, it looks promising to
apply more complex architectures with the attention mechanism - transformers
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2 Borisova et al.

- that have proven successful for processing video [14]. While the application
of transformers for long-term, high-resolution forecasting of the entire area of
the Arctic Ocean is challenging (due to the amount of computational resources
required to train a model), it appears suitable for the task of regional modelling
of ice dynamics in specific water areas, which is also quite important [5].

We found that self-designed baseline models based on simple convolutional
architecture significantly outperform deep transformers for long-term regional sea
ice forecasting for all regions considered. Similar problems with the applicability
of transformers are widely discussed for univariate and multivariate time series
forecasting [25]. However, for tasks similar to video prediction, the limits of the
applicability of transformers are still not well discussed. Therefore, we conducted
a detailed investigation using different models and setups.

In the experimental part of the paper, we provide a comparison of four ap-
proaches to predictive modelling of ice conditions. Two transformer-based deci-
sions: TimeSformer [3], which adapts the architecture for sequence prediction,
and SwinLSTM [20]. Shallow two- and three-dimensional convolutional networks
have been proposed as strong baselines. The experimental setup includes regional
prediction of ice concentration for five Arctic seas.

Experiments show the inability of transformers to reproduce the annual dy-
namics of ice concentration due to incorrect periodicity components. At the same
time, CNN-based baselines provide adequate results for long-term forecasting.
We compare them with two state-of-the-art (SOTA) solutions for sea ice forecast-
ing (physics-based system SEAS5 [10] and neural ensemble-based model IceNet
[1]). The improvement of the CNN-based baseline over domain-specific SOTA is
up to 30% in mean absolute error, up to 10% in structural similarity index and
up to 6% in ice edge reconstruction accuracy.

We can conclude that it is important to extend the existing benchmarks for
video prediction by novel tasks with strong periodic component to represent
the limits of transformers for a wide class of real-world "periodic" tasks (from
remote sensing to the analysis of production systems [6]). We have also provided
a synthetic example of periodic data for video forecasting task as an empirical
proof that the considered problem is not specific only to sea ice.

2 Related works

Sea ice forecasts can be obtained using global physical models based on systems
of differential equations have been developed to simulate ice conditions.However,
despite the scale of the system, the simulation is global and roughly reproduces
local processes, which is a serious limitation of its applicability For this reason,
regional physical models such as SI3 are widely used for real-world tasks.

The accumulation of remote sensing data has made it possible to use fully
data-driven models to forecast ice conditions. The task is known as spatio-
temporal forecasting, so image-based deep learning models are actively used.
Disadvantages of most deep learning models for forecasting ice conditions in-
clude a short forecasting horizon (several days or weeks [8]), while long-term
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Limitations of Transformers for Sea Ice Forecasting 3

forecasting (>3 months) is especially important for planning industrial work for
the next seasons.

Convolutional Neural Networks (CNN) [13] are widely used in sea ice mod-
elling. The most popular architecture is the U-net [1,8]. There are examples of
the use of U-net models for long-term forecasts up to one year [11]. However,
the limiting factor for the use of such solutions is the need for a large amount of
additional input data on the atmosphere (temperature, pressure, solar radiation,
etc.) for training and inference. To improve the quality of forecasts, simple mod-
els are often combined into ensembles, which allows a probabilistic modelling
component to be introduced, taking into account the confidence of each of the
ensemble models [1].

Since the spatio-temporal data is similar to a video sequence, video predic-
tion methods can be applied to sea ice concentration forecasting. The first group
of methods are recurrent networks. There are many architectures from ConvL-
STM [18] to the more recent (e.g. CrevNet [24]), which proposes a CNN-based
recurrent network for learning spatio-temporal dependencies. The PhyDNet [9]
model introduces physical knowledge into a CNN-based model to improve the
quality of prediction. For video prediction, these models perform reasonably well
due to their ability to account for spatial and temporal dependencies.

The Transformer [22] architecture has also been widely applied to video pro-
cessing. The ViT [7] model was the first to use Transformers directly for image
classification and achieved impressive results. However, the performance of the
ViT model is highly dependent on the size of the training sample. There is also
a promising SwinLSTM [20] model for video prediction based on Swin Trans-
former [14] blocks with a simplified LSTM. This model performs well in analysing
temporal and spatial dependencies in video files.

Limitations of transformers is a topic that is widely discussed in the literature
[25]. There is even a repository Transformers And LLM Are What You Dont Need
1, which contains the examples where simple models overcome deep transformers
for different tasks. However, the papers in this repository focus on time series
data (both univariate and multivariate). Even if the data has a spatiotemporal
nature (e.g. the task of predicting traffic at different spatial points , it is not
represented as a regular grid and solved by other methods (e.g. graph neural
networks). Thus, the limitation of the applicability of transformers to video-like
sequences is still an under-discussed topic.

3 Problem statement

We consider the problem of regional sea ice concentration prediction not only
from a domain-specific point of view. In this paper, we discuss the applicability
of state-of-the-art computer vision models to the data with specific properties
that are characteristic of the environmental case considered.

1 https://github.com/valeman/Transformers_And_LLM_Are_What_You_Dont_Need
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3.1 Nature of the data and models.

The main difference between metocean forecasting and conventional spatio-
temporal forecasting is the different nature of the data. First, the dynamic pro-
cesses in environmental systems are multiscale and non-stationary. In addition,
they contain an irremovable stochastic component.

However, state-of-the-art computational methods still perform well on a large
part of natural systems forecasting tasks - for example, the transformer-based
basic model can outperform both state-of-the-art classical simulation tools and
specialised deep learning models for weather forecasting [4]. So what is the prob-
lem? Why can we not apply state-of-the-art CV tools directly to sea ice data?
What is so special about this?

One issue is the non-differentiable nature of sea ice data - it is not a smooth
field, but data with a clear distinction between concentrated ice and clean water
(the so-called "ice edge"). In addition, sea ice has very complex periodic patterns
(e.g. annual periodicity for sea ice), the reproduction of which is crucial for
current forecasting.

In this paper we aimed to prove or reject the hypothesis: the practical ap-
plicability of regular-grid transformer-based models for spatio-temporal data with
specific periodic properties is very limited. We use regional sea ice concentration
prediction as a real-world case study to empirically confirm it.

The theoretical basis of this hypothesis is as follows: artificial neural networks
are combinations of several simple mathematical functions that implement more
complex functions from one real data value to another. The spaces of multivariate
functions that can be implemented by a network are determined by the structure
of the network and its parameters. Ice concentration data is non-linear, it is
a time series with pronounced periodicity. Since neural network architectures
based on transformers have a linear nature [17], the main hope for improving
the quality of prediction is achieved through a large number of parameters.

It is known that adding the ReLU activation function allows to increase the
efficiency of networks on linear layers by transforming the model architecture
[23]. Therefore, in the process of adapting the transformers to the task, ReLU
activation functions were added to the architecture to improve the quality of
data approximation based on a large number of parameters.

3.2 Benchmarks for spatio-temporal tasks.

As the task of spatio-temporal prediction is not new, there are many well-known
open benchmarks against which the model can be compared. For example, the
OpenSTL2 [19] benchmark for spatio-temporal predictive learning covers several
tasks (including weather prediction from WeatherBench [16]). However, tasks
similar to sea ice forecasting are not included in these benchmarks. For this rea-
son, we cannot base our experimental setup on existing benchmarks and prepare
our own dataset.
2 https://github.com/chengtan9907/OpenSTL
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4 Proposed approaches

We propose a strong baseline for the task of sea ice prediction based on a con-
volutional architecture. As typical examples of transformer models, we choose
TimeSformer and SwinLSTM. The mean absolute error was used as the loss
function for all models. The technical details of the model implementations and
their adaptation to the sea ice forecasting task are given below.

4.1 Baseline

CNN-2D was implemented as a CNN with an encoder-decoder architecture. It
consists of 5 convolutional 2D layers with ReLU activation function and its
transposed mirror. The values in the input images range from 0 to 1 due to
the nature of the ice concentration data. As input data, the model receives a
multichannel image with the history of the parameter; the output of the model
is a multichannel image with a prediction n steps ahead.

The training sample was formed by a sliding window along the space-time
series. The scheme illustrating the dataset formation is shown in Figure 1. This
approach allows the starting point of the model to be varied and a forecast to
start on any day of the year. This is important for applying the model to real
industrial problems as the forecast can be based on the most recent data.

Fig. 1. The preprocessing of training set of sea ice forecasting

Models trained with the L1 loss function tend to produce grain artefacts
during inference. To solve this problem and make the model lighter, we reduced
the spatial resolution of the input images (by a factor of 2).

Baseline CNN-3D uses a time component sensitive CNN encoder-decoder
architecture with 3D convolution. Each of the encoder and decoder parts con-
sists of 2 layers, forming a symmetric structure. Otherwise, the architecture and
training process are identical to the previous model.
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The model has fewer layers and parameters than the baseline because 3d
convolution is asymptotically more complex. This increased complexity means
that convolution operations with a 3d kernel can be more time-consuming than
those with a 2d kernel, even when the number of parameters is reduced. For
example, with almost the same number of parameters for 2D and 3D convolutions
(2234 and 2529 estimated with software), their total number of multi-adds is
42.83 million and 216.32 million respectively. The number of parameters for
TimeSformer is 33 million and 20 million for SwinLSTM. The impact of such an
increase on the runtime is shown in the Table 2.

The third dimension of the kernel acts as a temporal dimension to the input,
which consists of 2D images over time. By tuning this third dimension, the
model can effectively extract temporal components such as seasonality or trends,
thereby improving its ability to detect and predict time-dependent patterns in
the data. For these reasons, 52 was chosen as the third dimension of the kernel,
corresponding to one year of prediction, with each time step representing one
week. Choosing a higher frequency or increasing the number of layers becomes
challenging because with the input size halved and a history of 104 timesteps,
the feature maps can degenerate to zero after convolution.

4.2 Transformers

The dynamics of ice concentration changes can be represented as spatio-temporal
data closest to the video of ice melt and ice intrusion. In this video series, not
only neighbouring images are linked, but there can also be a link between images
related by seasonality. For example, the data for January of each year are linked,
and taking this into account it is possible to predict February more effectively. An
appropriate attention mechanism can be used to identify and take account of this
relationship. Although the original Transformer was developed for NLP (natural
language processing) tasks, there are now solutions for processing images, such
as ViT [2] and Swin Transformer [14]. For comparison with the proposed baseline
solutions, two transformer-based models were applied to the ice concentration
forecasting problem: TimeSformer [3] and SwinLSTM [20].

TimeSformer. Processing frames alone is not enough to create an effective
approach to sea ice forecasting. ViViT [2]and TimeSformer can provide a more
in-depth method for processing data such as video. These models are designed
for the task of video series classification and are encoder-only models.

TimeSformer implements the Divided Space-Time attention mechanism, which
we believe is the promising basis for the sea ice prediction task. Thus, our ex-
periments with transformers are based on the developments of TimeSformer.

The model architecture had to be refined because the original TimeSformer
was designed for video classification, and the task at hand requires the prediction
of ice concentration changes over multiple frames. To this end, the transformer
head responsible for classification was replaced by a convolutional decoder. This
decoder translates the hidden state of the output data from the TimeSformer
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Fig. 2. Application of the TimeSformer to the long-term sea ice forecasting

backbone into the [B,T ,H,W ] 3 dimension of the sea ice data set. Three convo-
lution layers with ReLU activation function and BatchNorm normalization were
used to unlock the decoder. A schematic illustration of the transformer for ice
concentration forecasting is shown in Figure 2.

Two NVIDIA Tesla P100 GPUs were used to train the model, and the time
spent is shown in the Table 2. The total number of epochs was set at 120, in ac-
cordance with the estimates used by the authors of the architecture (the original
work trains the model for 15 epochs). We also performed the additional exper-
iments and made sure that increasing the number of epochs did not improve
the results. To ensure the adequacy of the chosen number of epochs, conver-
gence curves were constructed for the training and test samples (presented in
the supplementary material).

SwinLSTM. This approach has performed well for video sequence prediction
on well-known datasets such as Moving MNIST, TaxiBJ, Human3.6m, and KTH.
The SwinLSTM architecture is based on Swin Transformer blocks and the sim-
plified LSTM. This approach is successful in extracting spatio-temporal repre-
sentations.

This model was used in both SwinLSTM-D and SwinLSTM-B without sig-
nificant architectural changes. The only change in our approach was to change
the resolution of the input data. Since the original SwinLSTM used data with
resolutions of 32x32, 64x64 and 128x128, it is expected that this model can be
successfully applied to our data resolutions. The learning process, optimizer, loss
function and learning rate values have not been changed. The only limitation of
this model is the frame prediction range. The authors of the paper conducted
experiments to predict from 4 to 14 consecutive frames. Our experiment requires

3 (B - batch, T - time, H - height, W - width).
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8 Borisova et al.

the prediction of 52 frames (52 weeks in a year). The time taken to train the
model in this statement for the different test areas shown in the Table 2. For the
6-frame (monthly temporal resolution) prediction training took 13 ± 3 hours for
90 epochs. However, this setup does not allow the intra-month dynamics of sea
ice to be represented.

5 Experiments studies

The experimental setup in the paper is focused on comparing the performance
of the proposed baseline model and transformer architectures in the sea ice
forecasting task.

We use the OSI SAF Global Sea Ice Concentration [21] product as training
data. The spatial resolution of the images is reduced to 14 km. To test the
generalisability of the developed models for different water areas, five Arctic
seas were selected as test areas. The spatial position of each sea is shown in the
supplementary materials.

The forecast horizon for the predictive models was set at one year ahead in
order to produce long-term forecasts. For inference, the pre-history length was
set to two years. The time resolution of the series was set to 7 days. Models were
trained over the period 1979 to 2020 years. Dates from 01/01/2020 to 31/12/2023
are used as a test set.

In order to compare the predictive capabilities of the models, forecasts were
made on the test sample starting on 1 January of each year. The quality metrics
chosen were the mean absolute error (MAE) for each prediction step and the
structural similarity index (SSIM). Ice edge product can be computed with ice
concentration through binarization. The choice of threshold is due to studies [1]
as a marker for the presence of ice in remote sensing data. Binary accuracy on
predicted ice edge was calculated to indicate the quality of thick ice position
prediction. Averaged metrics for the test sample are presented in Table 1. For
convenience, expanded tables with metrics averaged by quarters of each test year
are presented in the supplementary materials.

Architectures based on 2D and 3D convolutional layers differ significantly in
the complexity of the operations performed. Measurements of the time taken to
train 1000 epochs on NVIDIA GeForce RTX 4080 for each of the architectures,
depending on the size of the input area, are presented in the Table 2.

According to the metrics, the TimeSformer has a lower quality compared
to simpler models. To understand which period of the year makes the largest
contribution to the average error, the course of the metric over the year is shown
in the Figure 3 for the Kara Sea test area. Vertical lines mark the beginning of
each year. There is a pattern in the plot of the TimeSformer error that differs
from other models - the error increases significantly in the summer months.

To understand the reason for the increase in TimeSformer error in the sum-
mer period, we look at the ice concentration maps for each prediction time step.
Example of each model prediction in July compared to the ground truth map
shown in Figure 4.We also plot the time series of each prediction at one point to
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Table 1. Quality metrics for implemented models (averaged over 2020-2023), forecast
horizon - 1 year (bold are the best)

Metric Mean Absolute
Error (MAE)

Structural Similarity
Index (SSIM) Accuracy (0.2 threshold)

Model 2D
CNN

3D
CNN

Time
Sformer

2D
CNN

3D
CNN

Time
Sformer

2D
CNN

3D
CNN

Time
Sformer

Kara
Sea 0.080 0.082 0.111 0.673 0.655 0.530 0.929 0.928 0.892

Barents
Sea 0.065 0.061 0.134 0.679 0.670 0.482 0.935 0.937 0.839

Laptev
Sea 0.075 0.079 0.161 0.720 0.700 0.591 0.933 0.934 0.875

East-
Siberian

Sea
0.087 0.081 0.176 0.710 0.705 0.688 0.923 0.931 0.870

Chukchi
Sea 0.084 0.083 0.153 0.696 0.700 0.567 0.936 0.935 0.899

make sure that the pattern of error does not change over the years. As we can
see from the maps and plot, TimeSformer does not predict ice melt during the
summer period correctly.

TimeSformer. Results are related to the way data are transformed when fed
into the spatial attention and temporal attention blocks. In the original work
this solution performs well for the video series classification task, however, for
predicting ice concentration this solution is not optimal. Perhaps, this solution
requires modernization of the input data patching, for example, using 3D con-
volution as implemented in the ViViT model, as well as applying a different
approach in the attention blocks. However, these changes may lead to higher
computational complexity, which will eventually require much more computa-
tional resources to achieve the quality of models based on 2D convolutions.

SwinLSTM. This model demonstrated low efficiency in forecasting of long se-
quences. In the considered formulation of the problem of predicting one year from
two years of prehistory, SwinLSTM could not achieve the results of TimeSformer.
This model predicts all 52 weeks with one coarse value of ice concentration. This
prediction is even worse than predicting each week with the average ice concen-
tration for the whole year. In the original experiments of SwinLSTM developers,
this model did not predict more than 14 frames. Therefore, the failure in pre-
dicting 52 frames of ice concentration is not so surprising.

Comparison with SOTA for sea ice. To evaluate the absolute values of the
errors of the implemented models, we compare them with the SOTA solution
SEAS5 forecast system. SEAS5, ECMWF’s fifth generation seasonal forecasting
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10 Borisova et al.

Fig. 3. Metrics for each time step of prediction for Kara sea

system, is physics-based and uses systems of differential equations. It provides a
global Arctic forecast 7 months ahead and includes 51 ensemble elements. Due
to differences in forecast horizons, in the generalised Table 3 the forecast of all
models is limited to the SEAS5 horizon, detailed tables can be found in the
supplementary material.

To assess the quality of ice edge prediction, IceNet, a forecasting system
based on an ensemble of neural networks, was chosen as a data-driven SOTA.
IceNet consists of 25 ensemble members, each of which is a U-net architecture
model. Eleven climate and ice cover variables are used as input parameters. As
the solution provides a monthly probabilistic forecast for 6 months, we used a
confidence threshold of 0.8 for the probabilistic model. In the generalized Table 3
for each of the seas the forecast is limited to a 6 month horizon, a detailed table
can be found in the supplementary.
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Fig. 4. Comparison of spatial distribution of values on prediction for 2021/07/16 in
Kara Sea for different models

Table 2. Time spent on training models on test areas

Model
architecture

2D CNN
model

3D CNN
model SwinLSTM TimeSformer

Sea Image
size

Train runtime
in hours

(1000 epochs)*

Train runtime
in hours

(120 epochs)*
Kara 70x60 1.2 2.0 26.2 105.4

Barents 80x75 2.4 3.0 28.7 105.6
East-Siberian 50x62 0.8 1.5 24.6 105.3

Laptev 55x65 1.1 1.7 25.4 105.3
Chukchi 42x73 0.9 1.4 22.1 105.1

* 2D, 3D Conv-based trained on NVIDIA GeForce RTX 4080, SwinLSTM
and TimeSformer on NVIDIA Tesla P100 GPU
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Table 3. Comparison of averaged metrics with SOTA-solutions (SEAS5 and IceNet),
7 month ahead forecast (bold are the best)

Metric Mean Absolute
Error (MAE)

Structural Similarity
Index (SSIM)

Accuracy (comparison
with ice mask
from IceNet)

Model SEAS5 2D
CNN

3D
CNN

TimeS
former SEAS5 2D

CNN
3D

CNN
TimeS
former

Ice
Net

2D
CNN

3D
CNN

TimeS
former

Kara
Sea 0.093 0.076 0.076 0.109 0.653 0.683 0.663 0.581 0.918 0.945 0.943 0.929

Barents
Sea 0.073 0.063 0.060 0.129 0.634 0.684 0.672 0.489 0.906 0.922 0.944 0.916

Laptev
Sea 0.101 0.068 0.072 0.146 0.703 0.722 0.706 0.608 0.967 0.982 0.980 0.966

East-Siberian
Sea 0.098 0.074 0.069 0.177 0.723 0.718 0.714 0.685 0.980 0.990 0.990 0.988

Chukchi
Sea 0.067 0.075 0.073 0.147 0.780 0.713 0.719 0.588 0.974 0.979 0.981 0.962

As can be seen from the tables, both the absolute values of ice concentra-
tion and the ice edge position predicted by convolution-based models are of
better quality than SOTA. Statistical significance was confirmed using the non-
parametric one-sided Mann-Whitney test. IceNet, SEAS5, 2D CNN and TimeS-
former all have difference with p-value <0.05. 3D CNN and 2D CNN are not
different with p-value 0.91. These models can therefore form a foundation for
solutions that go beyond the current state-of-the art.

Toy example on periodic video data. To ensure that the problem of trans-
formers in modelling periodic spatio-temporal data is not specific for analyzed
case only, we performed an additional experiment on a 10-frame video (gif ani-
mation) based on the manga character "Menhera Shoujo Kurumi-chan" [15]. The
animation was divided into frames, scaled to 45x45 resolution, transformed from
RGB to 1-channel gray scale with values from 0 to 1. To imitate spatio-temporal
data, 10 frames were repeated 5 times, a train set was formed with a slide window
on this time series. As a pre-history 20 images were used, the prediction horizon
was 10 images of the series ahead. Experiment run with TimeSformer architec-
ture and 2D CNN architecture. The prediction results are shown in Figure 5.
Statistical significance of models errors difference confirmed with Mann-Whitney
test (p-value for MAE - 0.002, for SSIM - 0.001).

Due to the small training set, we were able to run TimeSformer for 4000
epochs, the CNN was trained for 100000 epochs, the stopping criterion is the
number of epochs without L1loss improvement. Detailed convergence plots are
described in the supplementary materials (Media data convergence).

As the data has an explicit periodicity and no stochastic component, it is
expected that the models will be able to approximate the training sample with
near-zero error. However, TimeSformer reaches a plateau at 0.02 and produces
artifacts in the center of the image. The CNN model converges asymptotically to
zero error. Both models capture the temporal dynamics of contour changes well,
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Fig. 5. Media images pre-processing and prediction result (for TimeSformer, CNN-2D)

but the Transformer reproduces the distribution of values within the contour
poorly. This behavior is similar to the results obtained with ice data - the model
tends to reproduce particularities while losing sight of the more general trend,
or vise versa.

6 Conclusion

The results of the experiments confirmed the hypothesis about the limited ap-
plicability of transformers for spatio-temporal data with strong periodicity.

For the sea ice concentration forecasting task, the adaptation of the TimeS-
former architecture showed a weak reproduction of the time component, due to
which the ice concentration in the water area in the summer period did not fall
below 0.3, making such a forecast inapplicable. SwinLSTM, aimed at the video
prediction task, proved to be helpless in reproducing the annual dynamics. It
showed a tendency to self-repeat - for a 7-day forecast a year ahead, summer ice
conditions were indistinguishable from the model’s initial conditions. It is also
worth noting the grainy artifacts in the predictions of transformer-based models.

At the same time, shallow baseline models based on CNN showed reasonable
quality compared to SOTA solutions in the field of sea ice prediction. For the
forecasts of ice concentration we achieve a quality improvement of up to 30%
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(Laptev Sea) against SEAS5 system. For ice edge position prediction we achieved
comparable results against data-driven system IceNet in terms of accuracy (at
the 0.2 threshold) and quality improvements of up to 4-5% in certain water areas
(Kara Sea, Barents Sea).

The video prediction experiments for synthetic periodic data also confirm the
existence of highlighted problem - convolutional baseline outperforms TimeS-
former by 8% for SSIM and 25% for MAE. While further evaluation of the
limitations of transformers is still required, we can claim to have provided the
solid empirical conformations on the previously poorly discussed problem.
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