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Abstract. The growing complexity of contemporary microwave circuits made 

numerical optimization imperative as a performance-boosting tool. Yet, it is in-

tricate because of the high costs incurred by electromagnetic (EM) analysis re-

quired to evaluate the system’s quality reliably. These expenses are particularly 

significant in global optimization, which is necessary in many situations. This 

study introduces an innovative strategy for high-efficacy globalized optimiza-

tion of passive components. Our methodology leverages reduction of the prob-

lem dimensionality implemented using a rapid global sensitivity analysis and a 

custom-developed machine learning (ML) algorithm employing fast surrogate 

models established in the reduced domain. The designs rendered by the ML pro-

cess are further refined in the local sense in the full-dimensionality parameter 

space using a gradient-based routine. Additional improvement in efficiency is 

obtained by employing multi-fidelity EM simulations with the low-fidelity mod-

els used for global search and high-fidelity ones only utilized in fine-tuning. The 

presented approach has been comprehensively validated utilizing two coupling 

circuits and juxtaposed against a pool of benchmark algorithms. The obtained 

results underscore the remarkable efficacy of our procedure. The typical running 

cost does not exceed a hundred high-fidelity EM analyses, corresponding to siz-

able savings over the benchmark. At the same time, the proposed method renders 

designs of competitive quality. 

Keywords: Computer-aided design, microwave engineering, optimization, EM-

driven design, dimensionality reduction, multi-fidelity simulations. 
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1 Introduction 

Microwave passive components have become increasingly complex in fulfilling per-

formance demands associated with emerging application areas. On top of meeting strict 

requirements concerning electrical characteristics [1], [2], one of the crucial consider-

ations nowadays is miniaturization [3]. Size reduction can be achieved through appro-

priate geometry modifications (e.g., line folding and utilization of metamaterials [4], 

[5]), which lead to the further increase of topological sophistication. Accurate assess-

ment of such circuits requires electromagnetic (EM) simulation because conventional 

methods, such as equivalent network modeling, cannot quantify phenomena such as 

cross-coupling, dielectric losses, or the effects of the system’s environment (e.g., con-

nectors, housing) [6].  

Although EM-driven design is imperative, at least at the later stages of the circuit 

development process [7], it is also intricate. The major issues include handling multiple 

decision variables, design objectives, and constraints. At the same time, repetitive EM 

simulations incur considerable computational expenses, which is especially problem-

atic when using numerical optimization methods. Employing the latter also requires an 

appropriate background and familiarity with optimization algorithms, which micro-

wave engineers often lack. Consequently, traditional approaches relying on combining 

engineering insight and parametric studies are still widely used even though they cannot 

yield optimum results. Nonetheless, such interactive techniques are immensely labori-

ous. Another challenge is that in a growing number of cases, global optimization is 

necessary to address the design problem’s multimodality (e.g., design of metasurfaces, 

array pattern synthesis, etc. [8], [9]), unavailability of a good starting point [10], or 

optimization-driven miniaturization [11]. 

Today, global optimization is mainly conducted with nature-inspired algorithms 

[12], [13]. These methods leverage the exchange of information between sets of candi-

date solutions processed during the optimization run and the employment of stochastic 

components [14] to allow escaping from local optima. The literature is replete with 

specific procedures (e.g., [15]-[17]). Their popularity stems from straightforward han-

dling and accessibility. Unfortunately, direct optimization of EM simulation models 

through population-based methods incurs tremendous computational expenses. In prac-

tice it is typically attempted if cheaper (e.g., analytical) models are available [18]. Cost-

related difficulties may be alleviated with the help of surrogate modeling [19], often 

incorporated into machine learning (ML) frameworks [20], [21]. The ML process ren-

ders candidate solutions (infill points) using a metamodel as a fast predictor, subse-

quently refined using accumulated EM data [22]. Despite its potential benefits, the con-

struction of a reliable surrogate is the most severe bottleneck of ML, mainly due to the 

curse of dimensionality. Mitigation methods include domain confinement [23], varia-

ble-fidelity approaches [24], feature-based methods [25], [26], and physics-based 

frameworks (e.g., space mapping [27]). Unfortunately, many of these solutions lack the 

generality and are challenging to integrate with global search engines. 

This research introduces a new approach to reduced-cost globalized optimization of 

microwave circuits. We focus on enhancing the efficiency and reliability of the search 

procedure. To pursue this goal, a fast machine learning algorithm is introduced that 

incorporates kriging metamodels built in a dimensionality-reduced subspace. The latter 
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is determined with the help of a rapid global sensitivity analysis (RGSA), which iden-

tifies directions corresponding to the most prominent changes in the system's frequency 

characteristics. The candidate solutions are rendered by a particle swarm optimizer 

(PSO) used as a core search algorithm. Cost efficiency is further enhanced by involving 

low-resolution EM analysis for global search. Meanwhile, the dependability is ensured 

by employing high-fidelity EM models at the final (gradient-based) tuning stage. Ex-

tensive numerical verification demonstrates the exquisite efficacy of our method. It is 

superior over several benchmark techniques, among others nature-inspired and ma-

chine-learning routines. The average cost does not exceed a hundred high-fidelity EM 

analyses. Meanwhile, multiple runs of the algorithm corroborate the ability of the 

framework to yield satisfactory results in each instance. 

2 Fast Microwave Optimization by Dimensionality Reduction 

Here, we elucidate the operation of the suggested global optimization procedure. The 

design task statement is recalled in Section 2.1. Variable-resolution EM models and 

rapid sensitivity analysis are discussed in Sections 2.2 and 2.3. Sections 2.4 and 2.5 

elucidate the global and local search stages. Finally, Section 2.6 puts together the oper-

ation of the entire algorithm. 

2.1 Problem Statement 

We aim to reduce a merit function U(x) encoding the design quality. Here, x = [x1 … 

xn]T represents the decision variables (here, geometry parameters of the circuit). The 

task is stated as  

 

 
 

in which X is the search domain. The circuit outputs (scattering parameters versus fre-

quency) are evaluated using EM analysis and denoted as , with i and j being the 

indices of the port indices; f stands for the frequency. A representative example is a 

microwave coupler designed to enhance return loss and port isolation at a target fre-

quency f0. At the same time, we aim to maintain a target power division ratio KP at f0. 

The merit function may take the form of  

 

 
 

In (2), the second part is a regularization factor that enforces the power division condition. 

2.2 Multi-Fidelity EM Models 

Multi-fidelity models have been utilized in microwave engineering for over two dec-

ades to accelerate design procedures [28]. The idea is to trade-off accuracy for speed 

under controlled conditions, i.e., appropriate enhancement of the low-resolution model. 
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Although the less reliable representation is typically an equivalent network, it is of lim-

ited generality. In this work, we implement the low-resolution model Rc(x) by reducing 

the resolution of the EM analysis (i.e., using coarse discretization of the simulated cir-

cuit). This versatile approach ensures a sufficient correlation with the high-resolution 

model Rf(x) [29]. A representative example and typical relationship between Rc and Rf 

have been showcased in Fig. 1.  

This study employs Rc to execute sensitivity analysis, construct the initial surrogate 

model (Section 2.3), and carry out the global search stage (Section 2.4). In contrast, Rf 

is for final tuning (Section 2.5). Note that due to a good correlation between the models 

(cf. Fig. 1), Rc can be used uncorrected, also because possible inaccuracies will be rec-

tified at the last stage.  

2.3 Global Sensitivity Analysis. Dimensionality-Reduced Search Domain 

This study uses a surrogate-assisted ML scheme to conduct the global search stage. 

The major challenge is building a reliable data-driven metamodel. Here, it is facilitated 

through dimensionality reduction implemented using a rapid global sensitivity analysis 

(RGSA) adopted from [30] and outlined in Fig. 2. RGSA produces a set of orthonormal 

directions ej ordered regarding their effect on the circuit response variability. These 

effects are quantified by the eigenvalues 1  2  …  n. The restricted domain is 

then established using a small number Nd of the most relevant vectors collectively ac-

counting for most of the system’s response variability. Given the threshold Cmin, Nd is 

set as the smallest integer such that [30] 

 

2 2

min1 1
 

= =
 

dN n

j jj j
C                                               (3) 

 

Here, Cmin = 0.9 so that the vectors ej determining the domain are responsible for 90% 

of the overall variability. The reduced domain Xd is determined as 

 

 

 

 

Fig. 1. Multi-fidelity models: (a) exemplary miniaturized microstrip coupler, (b) frequency 

characteristics obtained with the low- and high-fidelity EM models Rc (gray) and Rf (black). The 

evaluation times for Rf and Rc are 210 and 90 seconds, respectively. 
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The vector  (decision variable space center);  are real 

numbers. 

2.4 Global Search Stage 

The first search step is global optimization using Rc and conducted in the reduced 

space Xd. It is a machine learning (ML) process with the infill criterion involving the 

improvement of the merit function . The underlying surrogate is kriging interpolation, 

which is optimized using the particle swarm optimizer (PSO). 

 

 

 

Fig. 2. The outline of RGSA [30]. The principal vectors ej are associated with the directions 

significantly affecting the circuit outputs as quantified by the corresponding eigenvalues j. 
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The initial surrogate model is constructed using NiNd samples, where Ni = 20 in the 

verification experiments discussed in Section 3. The training points 

, are allocated uniformly in the reduced domain Xd. A temporary 

surrogate stmp(x) is first built using . Next, stmp is iteratively 

enhanced using the points produced by maximizing the mean square error (MSE) of 

the metamodel for j = 1, 2, … 

 

 
 

The infill vector is incorporated into the training dataset so that we have 

{xB
(k),Rc(xB

(k))}k = 1, …, NiNd + j. Maximization of MSE (here, using PSO) promotes the 

enhancement of the surrogate’s accuracy. The model construction is terminated if the 

cross-validation-estimated relative RMS error becomes smaller than Emax (here, set to 

20%) or the overall number of generated samples exceeds 2NiNd. The final version of 

stmp(x) is renamed as the initial surrogate s(0)(x). 

Having s(0)(x), the global search stage is launched within Xd, which is a machine learn-

ing (ML) algorithm. It starts by optimizing s(0). Subsequent models, , are 

obtained using the EM simulation results generated during the search. ML generates can-

didate solutions  by optimizing the cost function , i.e., 

using predicted improvement of the merit function. US coincides with the original merit 

function U (cf. Section 2.1) but it is computed based on s(i)(x) rather than EM-simulated 

outputs. We have 

 

 
 

Again, PSO acts as the core search engine, although any bio-inspired routine may be 

used. Note that because of the low cost of evaluating , solving of (6) may be 

executed using a high computational budget (here, 10,000 cost function calls). The can-

didate designs and the accumulated EM data are used to refine the surrogate: s(i)(x) is 

built based on , with . The ter-

mination conditions are:  (convergence in argument), or no improve-

ment in cost function for the last Nno_improve iterations. The parameter values utilized in 

the verification experiments are . 

2.5 Fine Tuning 

The global search stage is conducted in Xd using Rc. Both factors enable significant 

computational savings. The same factors contribute to a degradation of reliability. 

This is rectified by adding a fine tuning stage, executed in the original decision vari-

able space, and using high-fidelity EM analyzes. The underlying search routine is the 

trust-region (TR) algorithm [31]. The circuit response gradients are computed using 

finite differentiation (FD) [32]. Because the process starts from an already good de-

sign rendered by ML, the cost of final tuning is low. The algorithm is further expe-
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dited by replacing FD with a Broyden updating scheme [33], when the process ap-

proaches convergence, i.e., when , where TR = 10–3 is the termi-

nation threshold. 

 

 

 

Fig. 3. Proposed machine learning procedure for global microwave optimization: flow diagram. 
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2.6 Complete Algorithm 

The complete optimization framework employs the algorithmic components dis-

cussed in Sections 2.2 through 2.5. Our approach utilizes fast surrogates built in a di-

mensionality-reduced space defined using RGSA. It should be reiterated that sensitivity 

analysis (RGSA) and the global search stage are conducted using the faster but less 

accurate low-fidelity EM model Rc. Fine tuning is conducted using the high-fidelity 

model Rf. There are few control parameters (Nr, Ni, Emax, , Nno_improve, TR), all of which 

were discussed in detail in the preceding sections. None of these parameters is critical, 

and most control the resolution of the search process. The algorithm’s flow diagram is 

illustrated in Fig. 3.  

3 Results 

This section showcases the operation of the suggested technique, demonstrated with 

two microstrip circuits and extensive comparisons to four benchmark methods, nature-

inspired, gradient-based, and machine learning. 

3.1 Test Circuits 

Consider the test circuits illustrated in Fig. 4, and referred to as Circuits I and II. Their 

important parameters are listed in Table 1. CST Microwave Studio [36] is used to imple-

ment the computational models. The low-fidelity Rc model is a coarse-discretization ver-

sion of the high-fidelity representation Rf (cf. Section 2.2). The resolution of Rf is deter-

mined through a grid convergence study. Note that both verification problems are chal-

lenging and require handling four distinct responses (matching, transmission, and isola-

tion characteristics), several objectives, and carrying out the search in vast parameter 

spaces. 

3.2 Setup 

The setup of our framework and the benchmark procedures have been included in Ta-

ble 2. There are four methods, including particle swarm optimizer (PSO) (Algorithm I) 

executed in two versions (500 and 1000 objective function evaluations), random-initiali-

zation gradient-based search (Algorithm II), and two ML routines. Among these, Algo-

rithm III operates in the original parameter space. In contrast, Algorithm IV uses dimen-

sionality reduction similar to that employed in this work, but the entire search process 

employs high-fidelity EM simulations. Observe that the budget assigned to Algorithm I 

is lower for bio-inspired methods yet considerable in absolute terms (a few days of CPU 

time). On the other hand, Algorithm II is incorporated to demonstrate the multimodality 

of our verification tasks.  

3.3 Results 

The results are displayed in Tables 3 and 4. The data encapsulates the mean value of 

the merit function and the optimization cost evaluated for ten independent executions of 
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each method. Additionally, a success rate is displayed, which is the fraction of runs lead-

ing to satisfactory outcomes. The expenses are expressed in the equivalent number of Rf 

evaluations. Figures 5 and 6 show the circuit frequency characteristics for the selected 

runs of the suggested technique. 

The main performance factors are reliability and computational efficiency. The relia-

bility is assessed using the success rate, which is perfect (10/10) for our methodology and 

both test cases. In contrast, the benchmark techniques perform much worse. In particular, 

the fraction of successful runs for the random-start gradient search is only 5/10 and 8/10 

for Circuit I and II, respectively, which underscores multimodality of the considered ver-

ification problems.  

 

 
Fig. 4. Test cases: (a) Circuit I [34], (b) Circuit II [35]. 

 

Table 1. Essential data and design requirements for Circuits I and II 
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The performance of PSO is much better (9/10), yet not perfect, which is indicative of 

insufficient computational budget. On the other hand, the ML-based techniques match 

ours; however, they exhibit significantly higher computational expenses. The design qual-

ity measured by the objective function value is also highly competitive for the proposed 

approach. It is comparable to Algorithms III and IV but significantly better than Algo-

rithms I and II. Also, one can note that increasing the budget for Algorithm I translates 

into a noticeable improvement in the results (by a few dB), which is another argument 

against direct EM-driven parameter tuning by means of bio-inspired techniques.  

Computational efficiency is another advantage of the suggested technique. The average 

expenses incurred by the optimization process are below a hundred Rf evaluations, corre-

sponding to 91 percent relative speedup over Algorithm I, 67 percent acceleration over 

Algorithm III, and 45 percent acceleration over Algorithm IV. At the same time, our 

method incurs costs comparable to gradient-based search (94 versus 54 EM simulations), 

which is remarkable given the local nature of Algorithm II. These benefits are the results 

of the mechanisms incorporated into the proposed framework, especially dimensionality 

reduction, the two-stage optimization process, and multi-fidelity EM analyses. 
 

 

Table 2. Benchmark techniques 
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Table 3. Circuit I: Optimization Results 

 

 

Table 4. Circuit II: Optimization Results 

 
 

 

 
                                    (a)                                                                        (b) 

Fig. 5. Circuit I: designs found by the proposed multi-fidelity ML algorithm: (a) selected run 1, 

(b) selected run 2. 
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                                    (a)                                                                        (b) 

Fig. 6. Circuit II: designs found by the proposed multi-fidelity ML algorithm: (a) selected run 1, 

(b) selected run 2. 

4 Conclusion 

In this study, we developed an innovative methodology for the high-efficacy optimi-

zation of microwave passives. Our technique employs rapid global sensitivity analy-

sis (RGSA) to determine a confined search domain (spanned by vectors responsible 

for the most significant changes in the system outputs) and a machine learning (ML) 

algorithm to execute global stage, complemented by gradient-based fine tuning. The 

efficiency is boosted by incorporating multi-fidelity EM simulations, low fidelity 

(faster but less accurate) for RGSA and ML, and high fidelity for final tuning. Com-

bining these mechanisms results in competitive computational efficiency and relia-

bility, as demonstrated by using two planer circuits and benchmarking against several 

state-of-the-art techniques. 
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