
A Connectionist Approach to
Federated Digital Twins

Christian Vergara-Marcillo1,2[0009−0008−2691−5491], Rami
Bahsoon2[0000−0002−1139−5795], Nikos Tziritas3[0000−0002−2091−2037], and

Georgios Theodoropoulos4,1[0000−0002−7448−5886]

1 Dept. of Computer Science and Engineering, Southern University of Science and
Technology (SUSTech), Shenzhen, China

2 University of Birmingham, UK
3 University of Thessaly, Greece

4 Research Institute for Trustworthy Autonomous Systems, Southern University of
Science and Technology (SUSTech), Shenzhen, China

Abstract. Digital Twins (DTs) have driven significant innovation across
industries, creating virtual replicas of physical assets that enable continu-
ous learning, optimization, and informed decision-making. Digital Twins
Systems of Systems (SoS) pose open challenges that relate to represen-
tation, orchestration, and management at scale and call for innovative
approaches for collaborative modelling of their ecosystem. Federated Dig-
ital Twins (FDTs) have emerged as a solution, enabling integration and
resource sharing between independent DTs, fostering collaboration, and
unlocking the full potential of interconnected systems. This work pro-
poses a framework inspired by connectionism theory to model FDTs as
a system of systems, drawing on federated systems and cognitive neuro-
science to facilitate collaboration and emergent communication patterns.
A Smart Connected Farming case study is used as a proof of concept for
the proposed framework.

Keywords: Digital Twins · Federated Systems · Connectionist Theory
· Smart Agriculture.

1 Introduction

As dynamic virtual representations of physical assets or entities, ranging from
simple to complex systems [14], Digital Twins (DTs) facilitate insights, under-
standing, and informed decision-making, leveraging continuous real-time data
monitoring, what-if analysis, and predictions through simulation and learning
models. These advanced DT capabilities have been deployed due to multiple
cutting-edge enabling technologies, including the Internet of Things (IoT), Big
Data analytics, Artificial Intelligence (AI), edge and cloud computing [11]. While
individual DTs have demonstrated significant advantages in diverse domains, a
strong need has emerged for developing interconnected Digital Twin ecosystems
to deal with large-scale and complex systems-of-systems [17]. As a result, the
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concept of Federated Digital Twin (FDT) has emerged as an approach for com-
posing and coordinating DTs, each with its functional characteristics. Such com-
position may facilitate seamless coordination and collaborative decision-making
[32,16,36,33]. Secure inter-twin communications (virtual-to-virtual) may enable
cooperation and resource exchange within federated ecosystems while maintain-
ing the operational autonomy of individual DTs [35]. Shared resources range from
operational data reflecting physical system state to simulation model outputs,
knowledge, learning models [23], and decisions made by agent-based DTs [32,33].
While FDTs hold great promise, their inherent complexity and dynamism give
rise to substantial methodological and technological challenges spanning multi-
ple domains, including simulation and analytics, software engineering method-
ologies, theoretical design frameworks, standards, and interoperability.

Aspiring to contribute to the design and development of FDTs, this paper
investigates the concept of connectionism and the utilisation of Connecitonism
theory principles as a suitable paradigm to study interrelationships between DTs
within a federated environment. An FDT is conceptualized as a network of in-
terconnected DTs wherein interrelationships and potential synergies are enabled
across the federated network, regulating information flow based on local and
global objectives. The paper proposes a connectionist-inspired methodology for
capturing communication, interaction, and synergy among interdependent, po-
tentially autonomous DTs. While connectionism is often associated with deep
learning models, this paper draws inspiration from the fundamental principles
and mechanisms studied in this theory and cognitive neuroscience to study in-
terrelationships in FDTs. As a proof of concept, a precision agriculture use case
within Smart Connected Farming (SCF) systems [25] is considered, wherein a
network of cooperative Farm DTs are deployed as an FDT, virtually representing
a community of real-world smart farms in an agri-food production region.

The contributions of the paper are as follows:

1. Conceptualization of FDTs as Networks of Interconnected DTs: The paper
proposes a new perspective of Federated Digital Twins (FDTs) as a net-
work of interconnected, cooperative DTs facilitating dynamic information
flow across a federated ecosystem. This framework enables coordination and
resource exchange while maintaining the autonomy of individual DTs.

2. Development of a Connectionist-Inspired Methodology for Federated Digital
Twins (FDTs): This paper introduces a novel methodology inspired by con-
nectionism theory to study and model the interrelationships between Digital
Twins (DTs) within a federated system. The approach captures communi-
cation, interaction, and synergy among autonomous, interdependent DTs,
enhancing their collaboration and decision-making.

3. Application to Smart Connected Farming (SCF): The paper demonstrates
the practical applicability of the proposed FDT framework through a Smart
Connected Farming (SCF) use case. This case study explores how a network
of Farm DTs can be deployed in an agri-food production region, serving as
a proof of concept for the potential of FDTs in large-scale, complex systems
like precision agriculture.
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2. FEDERATED DIGITAL TWINS 3

The remainder of the paper is organized as follows: Section 2 presents an
overview of an FDT and current frameworks addressing federated ecosystems
for DTs. Section 3 provides a detailed exploration of the connectionism theory,
focusing on its application to FDTs. Section 4 outlines a proof-of-concept use
case within the context of Smart Connected Farm, while Section 5 presents an
experimental evaluation of the system. Section 6 concludes the paper by outlining
potential areas for future work.

2 Federated Digital Twins

A network of connected DTs representing multiple interconnected physical as-
sets, encompassing a wide range of complexities, has been analyzed by the Alan
Turing Institute within the UK’s national DT programme [13]. An ecosystem of
connected DTs representing the highest level of integration for homogeneous and
heterogeneous DTs, capable of capturing the intricacies of interconnected real-
world systems across various spatiotemporal scales, leveraging shared resources
and combined insights within federated environments [3]. Considering four po-
tential architectural styles, FDTs have been conceptualized as a virtual medium
for connecting autonomous DTs [32,33]. Security, standardization, and interop-
erability are crucial aspects that enable collaboration, informed decision-making,
and systems optimization through advanced data analytics and simulations.

FDTs have also been proposed as part of an evolutionary development model
for DTs, consisting of five layers to address their inherent complexity [19]. This
model incorporates replication, intra-twin synchronization, modeling, and sim-
ulation with FDTs, enabling advanced services in the fourth stage via an intel-
ligent platform. In urban and smart cities, the Internet of FDTs framework [36]
is being developed as a unified platform for coordinating DT networks within
the context of Society 5.0. A hierarchical architecture facilitates both horizon-
tal and vertical interactions between local DTs, accounting for crucial factors
such as inter-twin synchronization, dynamic resource allocation, and scalability.
Similarly, the MATISSE project [6] envisions an FDT framework to enhance
operations in industrial systems, reduce costs, and accelerate time-to-market
by promoting the adoption of DTs in this domain. Model-driven engineering
(MDE) techniques, general-purpose and domain-specific languages, the Func-
tional Mockup Interface (FMI), and model transformations support federation
across various large-scale industrial systems.

3 Connectionist Federated Digital Twins

3.1 Connectionism Theory

Connectionism, a concept from cognitive science, is a theory of information pro-
cessing that emphasizes the parallel nature of cognition. It draws inspiration from
the brain’s neurophysiology to explain human cognitive abilities through math-
ematical and statistical principles in Artificial Neural Networks (ANNs) [27]. In
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contrast to the classical symbolic theory, connectionism posits that complex cog-
nitive processes and mental phenomena emerge from the dynamic interactions
of simpler processing units, similar to biological neurons. Neurocognition refers
to modelling cognitive neuroarchitectures based on modern neuroscientific evi-
dence [20]. The connectionist paradigm, also known as the Parallel Distributed
Processing (PDP) framework, was extensively developed by the PDP Research
Group, drawing on earlier connectionist ideas and neuroarchitectures [24]. This
framework has profoundly influenced modern AI development, especially in Deep
Learning [4]. However, its origins trace back to Aristotle’s ideas on mental as-
sociations, later expanded by psychologists and neuropsychologists to explain
complex cognitive functions associated with brain processes [21].

Connectionist models focus on the communication between presynaptic and
postsynaptic neurons through activation states, with information flowing through
synaptic links modulated by Hebbian learning principles [15]. Nonetheless, most
computational models in ANNs are time-agnostic, overlooking the essential dy-
namism inherent in neural systems and cognitive processes, which prioritise time
over order [28]. Contemporary neuroscience emphasises that biological intelli-
gence involves cognition as an internal physical process unfolding through time
[22]. From the perspective of dynamical systems in cognitive science, philosophy
of mind, and neuroscience, cognition is viewed as the simultaneous, mutually
influencing unfolding of complex temporal structures. Thus, temporal dynamics
are crucial for understanding how neural connections organize and interrelate in
dynamical spiking neural network models [31].

3.2 Connectionist-inspired FDT Model

This paper leverages principles from connecitonism theory, synaptic communica-
tion (including synaptic weights), and Hebbian learning rules to conceptualize an
FDT as a connectionist network of interconnected processing units (DTs) where
synaptic weights modulate interrelationships and potential synergies between
them based on neural activity. Relevant similarities between FDTs and connec-
tionism (Table 1) motivate this study according to the fundamental properties
outlined in the PDP framework [24]. Moreover, biologically plausible Spiking
neuron models over ANNs are used to model dynamic DT state activation and
information propagation across the federated environment.

In this paradigm, each DT is treated as a processing unit within a connection-
ist network (federation) utilizing Leaky-Integrate and Fire (LIF) neuron models
[12]. Each processing unit accounts for two types of LIF models: (1) Intra-twin
LIF, which produces neural spikes to propagate events and stimulate intercon-
nected DTs, and (2) Inter-twin LIF which trigger operations and interactions
in the receiving DT upon continuous input stimulation, as illustrated in Fig-
ure 1. LIF models are used due to their biological plausibility, simplicity, low
computational cost, and capability to compute temporal dynamics.
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3. CONNECTIONIST FEDERATED DIGITAL TWINS 5

Table 1. Connectionist PDP properties applied to Federated Digital Twins

Connectionist
(PDP) property

Federated Digital Twins

Set of processing
units

Each processing unit in a connectionist network models
activation states propagating through the network. Thus, in
this study, each DT acts as a node within the federation,
utilizing LIF spiking neuron models (intra and inter-twin)
to capture its dynamics.

States of activation

Activation states reflect the incoming stimuli. In an FDT,
the internal state of each DT is determined by real-time
inputs from its physical counterpart. When active, a DT
emits an event (spike) to signal its state. Inter-twin
activation triggers DT operations and interactions,
modulating synaptic weights across interconnected DTs in
the federation.

Patterns of
connectivity

Connectivity matrices represent the relationships between
units. In the FDT, these matrices determine inter-twin
connectivity, capturing aspects such as geographical
distance, similarity, or communication relevance.

Propagation and
activation rules

Determines how DT outputs are transmitted across the
network, modulated by the connection weights within the
connectivity matrices (synaptic weights). This study
considers two modes: (1) When DTs are directly connected,
stimulation is based on the weight and output from external
DT, emitting spikes; (2) when DTs are not directly
connected, a probabilistic sigmoid function in the receiver is
used to notify about potential connections on its connected
nodes, enabling the emergence of new synaptic links.

Algorithm for
modifying patterns
of connectivity

The algorithm that adjusts synaptic weights based on
experience is crucial in connectionism. This study applies
the Spike Timing-Dependent Plasticity (STDP) rule, a form of
Hebbian learning, which modifies connectivity due to
interactions between DTs.

Representation of
the environment

DTs are situated within a virtual environment that
replicates the real world. For instance, in agricultural
applications, the environment is represented by data on
weather and soil conditions, which influence the behaviour
of DTs.

The threshold for each LIF model depends on the specific application, typi-
cally indicating a level of interest or saturation. For instance, intra-twin thresh-
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Fig. 1. FDT conceptualized as a connectionist network

olds might denote the productivity levels of a smart farm in agriculture, the
operational state of a machine on a manufacturing shop floor, or the traffic flow
limit in a cross intersection in transportation systems. Inter-twin LIF activation
depends on the level of connectivity between two DTs. Connections between
them are modeled as synapses, with the relevance of communication encoded in
the synaptic weights that flow through the synaptic links. Over time, connectiv-
ity can adapt based on interaction and the significance of information (plasticity
in neuroscience), influenced by parameters such as similarity, frequency, or trust,
using a Hebbian Learning rule.

The Leaky-Integrate and Fire neuron [10] describes the evolution of a neu-
ron’s membrane potential in response to input stimuli, and is modeled as:

τ
dU(t)

dt
= −U(t) + Iin(t)R (1)

Where U(t) is the membrane potential at time t, in volts (V) and τ is the
membrane time constant (s), which determines how quickly U(t) decays without
input current. τ is calculated as τ = RC, with R being the membrane resistance
(ohms, Ω) and C the membrane capacitance (Farads, F ). The term dU(t)/dt
represents the rate of change of membrane potential, while Iin(t) is the input
current in amperes (A), influencing the neuron’s charge. Larger values of Iin pro-
mote significant changes in the membrane potential, towards its firing threshold
ϑ. Equation 2 describes the discrete version of LIF used in this paper [10].

U(t+∆t) = U(t) +
∆t

τ
(−U(t) +RIin(t)) (2)

The membrane potential U(t) is interpreted as the evolving internal state of
a DT at time t, where observations are treated as input currents Iin(t), encoding
information as charge in the LIF model. Two types of LIF neuron models, based
on the two communication modes in DT networks [35], have been considered in
this study:
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3. CONNECTIONIST FEDERATED DIGITAL TWINS 7

– Intra-twin LIF: Models the internal state of a DT using the LIF neuron
model, where the input current Iin(t) represents local data sourced from
sensors or generated by simulation models. This data is structured as a vector
of characteristics X = [x1, x2, ..., xn], with each element xi corresponding to
a specific attribute of the DT. For example, in a smart farming context,
attributes related to biomass productivity, influenced by irrigation and crop
nutritional strategies, contribute to the internal activity level of a DT-Farm.
The DT may emit an outgoing event (spike) if the accumulated input exceeds
a threshold, indicating significant internal change.

– Inter-twin LIF: Captures inter-twin communication within the federation
using the Leaky Integrate-and-Fire (LIF) neuron model, where each DT in-
tegrates incoming spikes modulated by synaptic weights. These spikes trig-
ger internal processes in the receiving DT, which may include: (1) initiating
interactions to request additional information from connected DTs, or (2)
directly processing the content encoded in the event (spike), which includes
performance metrics, model parameters, or predictive outputs. This model
facilitates interoperability between DTs, which is a fundamental aspect of
FDT systems.

The rationale for using two separate LIF models in each DT (processing
unit) lies in the distinct nature of the information they handle. The proposed
approach integrates intra-twin LIF (outgoing) spikes into external inter-twin LIF
from connected DTs, influencing their behaviour (See Figure 1).

3.3 Spike Generation and DT Events

When an intra-twin LIF fires due to accumulated input current (observations
within the DT), it emits an event, represented as a spike, which is propagated to
connected units in the network. Modeled as a δ−Dirac function, these "instant
pulses" occur at a specific time t when a threshold ϑ is reached [12]. The temporal
nature of spikes is suitable for encoding information and generating temporal
dynamics across the network.

In this paper, each DT event carries information about the emitting DT in
the form of < P,Sp, t(s) >, where P contains the current properties of the DT
(static and dynamic attributes), Sp is the spiking state (True or False) and
t is the time when the spike is generated. Inter-twin spikes enable interactions
between connected DTs across the federation. Successive spikes and the time
between them may encode information, forming spike trains that represent the
intensity of neural activity. The stimulation between two DTs is influenced by
the temporal correlation and the synaptic weight in their connectivity, reflecting
principles of neural plasticity.

3.4 Spike Timing-Dependent Plasticity

Spike Timing-Dependent Plasticity (STDP) is an unsupervised Hebbian learning
mechanism that adjusts synaptic weights (w) based on the temporal relation-
ships between pre- and postsynaptic spikes [26]. This mechanism embodies a
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core property in the PDP connectionist framework [24]. The weight between
two processing units is reinforced if a presynaptic spike precedes a postsynaptic
spike (∆t > 0), a process known as Long-Term Potentiation (LTP), indicating a
potential causal relationship. In this paper, such stimulation initiates a process
of interaction between DTs. If this interaction is beneficial, the synaptic weight
between them is strengthened, fostering synergy. Conversely, synaptic weights
are weakened if a presynaptic spike follows postsynaptic activity (∆t < 0) or if
no meaningful interaction among DTs occurs. This process is known as Long-
Term Depression (LTD). Following the STDP rule, the synaptic weight w at
time t between DTs is updated as:

wt = wt−1 +∆wt. (3)

∆wt =

A+e
− ∆t

τ+ , if ∆t > 0 (post after pre)

−A−e
∆t
τ− , if ∆t < 0 (pre after post)

(4)

Here, A+ and A− are the learning rate amplitudes for potentiation and de-
pression, respectively, which determine the magnitude of the synaptic change.
Parameters τ+ and τ− are the time constants that control the decay rate of po-
tentiation and depression. ∆t = tpost − tpre captures the time difference between
postsynaptic and presynaptic spike events.

4 A Pilot Case

To demonstrate the proposed approach, this section applies the concepts pre-
sented in Section 3 to scenarios involving sustainable irrigation practices and
cooperation in smart farming systems. In smart agriculture, DTs are increas-
ingly being considered to enhance agri-food production through cyber-physical
systems, thereby improving food security, sustainability, and waste management.
By visualizing farming systems, DTs optimize resource efficiency and biodiver-
sity conservation [2]. Reinforcement learning agents, utilizing synthetic data,
minimize resource consumption while maximizing crop yields. What-if simula-
tions can explore strategies to enhance carbon sequestration in croplands and
pastures, including agroforestry [29].

On a larger scale, Smart Connected Farms (SCF) are transforming agricul-
ture by leveraging high-precision sensors, Big Data, and AI for crop and climate
monitoring. This promotes precision agriculture while providing socio-economic
benefits and a framework for studying the impacts of climate change on agri-food
systems [25]. Therefore, SCFs operating within federated environments utilizing
DTs have the potential to optimize natural resources across vast agri-food pro-
duction regions.

4.1 The Connectionist Model

A federation of DTs, conceptualized as a connectionist FDT, operates within
a network of independent farms in the context of a Smart Connected Farming
system, as illustrated in Figure 2.
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Fig. 2. Smart Connected DT-Farms as a Connectionist FDT

Given the complexities in agriculture and the daily challenges farmers face,
interconnected DTs share information to optimize water resources in a decentral-
ized, online manner within the federated ecosystem. An Agent-Based Modelling
(ABM) approach enables autonomous decision-making based on local observa-
tions and utilities while integrating external influences from connected peers.
Information is transmitted through events (spikes) that reflect productivity lev-
els, facilitating communication within the federation and exchanging efficient
strategies.

4.2 The Digital Twins Federation

At the core of each DT is a Crop Simulation Model (CSM) that simulates crop
growth and abstracts biological processes. Developed by agronomists and bi-
ologists, CSMs enhance understanding of crop responses to varying conditions
[8]. This study considers the WOrld FOod STudies (WOFOST) model [30], a
dynamic, mechanistic CSM that simulates crop growth based on environmental
factors (e.g., weather, soil, water, etc.). WOFOST operates on a daily time basis,
modelling various crops and enabling annual production analysis. The simulated
crop is a potato, with physical soil parameters provided by WOFOST in the
Python Crop Simulation Environment (PCSE) [34].

In this scenario, each DT-Farm acts as a processing unit in a connectionist
network, where intra-twin states and inter-twin communications are modeled
using LIF neuron models. WOFOST defines various crop performance metrics,
such as Total Above-Ground Production (TAGP), Leaf Area Index (LAI), and
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Total Weight of Storage Organs (TWSO), which are computed and retrieved
through its implementation in the PCSE.

At the end of the growing season, TWSO
(
kg ha−1

)
is a key performance

metric used to evaluate crop productivity and estimate potential profits [34].
Throughout the simulation, each DT-Farm monitors the daily biomass evolution,
quantified by the changes in TWSO calculated as:

∆TWSOt = TWSOt−1 − TWSOt (5)

Daily changes ∆TWSO are normalized relative to their yearly average (sim-
ulated), indicating productivity levels. This value is then transformed into the
current inputs Iin to charge the intra-twin LIF model. When the neuron’s mem-
brane potential reaches a threshold (indicating an increase in productivity), a
spike event is fired and transmitted to connected DTs to stimulate their inter-
twin LIF model, triggering a what-if analysis. Both intra- and inter-twin LIF
model parameters were calibrated using WOFOST outputs, with the following
configuration: threshold ϑ = 0.2, time step ∆t = 2ms, resistance R = 1Ω, and
capacitance C = 5F .

Six irrigation regimes (1-6), adapted from [18], were used to assess crop re-
sponse to varying irrigation strategies. These regimes were classified into two
groups based on frequency: low-frequency (every 4-6 days) and high-frequency
(every 1-3 days). Initially, all sites operated under low-frequency schedules. How-
ever, 30% of the sites had a 50% weekly probability of assessing implications to
use high-frequency irrigation, potentially offering benefits for local and similar
agroecosystems. Daily irrigation (depending on the strategy) is determined based
on crop evapotranspiration ETc (cm), computed as:

ETc = Kc × ET0 (6)

Where ET0 is the daily reference evapotranspiration derived using the Penman-
Monteith model [1], which incorporates weather effects. Kc, a crop coefficient
specific to crop developmental stages, was set for potatoes at 0.5 (initial), 1.15
(mid-season), and 0.75 (late-season) [9].

Therefore, DT-Farms aims to optimize water consumption, considering ini-
tially low-frequency regimes while exploring potential strategies that lead to in-
creased local productivity. The decision-making process determines the optimal
irrigation strategy between DTs in the federation, considering shared resources
and individual demands based on local conditions. The social interaction model
[5] (Equation 7) serves as a local utility, capturing spillovers and network effects,
and guides weekly choices.

Ui(ωi, ω−i) =

(
γxi + zi + δ

∑
j

cij(t)xj

)
ωi −

1

2
ω2
i + ϕ

∑
j

aijωiωj (7)

Each DTi selects a strategy ωi from irrigation regimes that maximizes its
local utility while accounting for peers’ actions and influence. The variable
xi denotes the weekly predicted local yield (TWSO) and zi the Water Use
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Efficiency (WUE). WUE represents the ratio of yield to the amount of wa-
ter applied, expressed as kilograms per cubic meter

(
kg m−3

)
[7]. The term

δ
∑

j cij(t)xj captures contextual effects or direct influence from connected nodes
while ϕ

∑
j aijωiωj reflects strategic complementarity [5]. A and C are weighted

(normalized) sociomatrices, where aij and cij represent the peer and contex-
tual effects. The middle term captures the convex costs of water consumption.
Hence, farms with similar characteristics will most likely influence one another.
For simplicity, parameters γ, δ and ϕ are set to 1.

A is derived using the Haversine distance based on geographical locations
according to Equation 8.

ai,j = 2 · r · arcsin

(√
sin2

(
ϕj − ϕi

2

)
+ cos(ϕi) · cos(ϕj) · sin2

(
λj − λi

2

))
(8)

Where aij is the distance in meters, and r is the Earth’s radius = 6371 km.
ϕj and ϕi are the latitudes of DT-Farms j, and i, respectively, while λj and λi

are their longitudes.
C was obtained using the Cosine distance between connected farms as a

metric of similarity according to Equation 9.

ci,j =
ui · uj

∥ui∥∥uj∥
(9)

Where ui, uj are normalized vectors encoding weather conditions and soil
attributes between DT-Farms i and j, respectively. Weather features include
average temperature, evapotranspiration, solar radiation, wind speed, vapour
pressure, and total precipitation. Soil features comprise field capacity, wilting
point, and saturation point.

An iterative message-passing process is done weekly to coordinate irrigation
strategies among DT-Farms, using the CSM to predict the expected productivity
(TWSO) that maximizes joint utility. The utility function considered is topology-
dependent, capturing network effects on farm utilities. Successful strategies are
identified and exchanged between connected nodes. In this connectionist ap-
proach, communication is modulated by local spiking activity and event-based
transmission across synaptic links. If the cumulative stimulation exceeds the
threshold in the inter-twin LIF model, an interaction process is initiated, en-
abling a what-if analysis based on shared data among DTs.

If information from one farm leads to notable improvements in another, the
connectivity weight between them is strengthened according to the STDP rule
(LTP), indicating similarities and potential synergies. If no meaningful gains
or no activity is detected, the connectivity weight decays (LTD). The dynamic
evolution of these synaptic weights influences social utility across the network,
ultimately shaping decision-making processes. The objective is to study the im-
pact of static and emergent dynamic topologies derived from connectionism.
The STDP parameters used were A+ = 0.01, A− = 0.005 and τ = 5ms. ∆t
is the time difference between the pre- and postsynaptic spikes obtained as
∆t = 0.001× (tpost − tpre).
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5 Experimental Results

Experiments were conducted under two scenarios: a fixed nearest neighbours
topology and a dynamic connectionist network. Fixed topologies constrain in-
formation exchange to predefined links, limiting the emergence of interactions
among DT-Farms. In contrast, the dynamic connectionist approach enables adap-
tive links and synergies modulated by spiking neural activity. Figures 3(a) and
3(b) illustrate these structural differences.
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Fig. 3. FDT network topology for connected DT-Farms

Results revealed the emergence of synaptic links between synergistic DT-
farms, such as DT-Farm 4 and DT-Farm 9 or DT-Farm 2 and DT-Farm 7 (Fig-
ure 3(b)), formed probabilistically through DTs intermediaries based on envi-
ronmental conditions and soil similarities. These connections, enable productive
DT-Farms to influence others through their intra- and inter-twin LIF models,
fostering dynamic communication channels that promote interoperability and
cooperative behavior within the federation.
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Fig. 4. FDT performance comparison
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Figure 4(a) illustrates increased productivity across all connected DT-Farms,
benefiting farmers with improved profits. Simultaneously, the integrated social
model for irrigation decision-making penalises excessive water use, mitigating
environmental impact. Therefore, synaptic links in a connectionist federation
facilitate information diffusion among DTs, while fostering sustainable agricul-
tural decisions based on the social model in Equation 7. Experimental results
indicate a total productivity increase of up to 20.6% achieved by a connectionist
network compared to the Nearest neighbours approach by the end of the 2023
growing season. Furthermore, Water Use Efficiency improved, ranging from 0.7%
to 22.04% across all DT Farms, as illustrated in Figure 4(b), due to information
exchange and decentralized decision-making considering the emergent network
topology.

6 Conclusions

This paper proposes a novel framework based on connectionism theory to support
Federated Digital Twins, modelling the dynamic interrelationships among inter-
connected DTs in a federated environment. Drawing on principles from cognitive
neuroscience, the proposed approach captures collaborative patterns for commu-
nication and decision-making, enabling cooperation and resource exchange across
autonomous DTs. By incorporating temporal dynamics and adaptive connectiv-
ity, this methodology enhances the capability of federated ecosystems to handle
complex, large-scale systems.

The proof of concept in the context of precision agriculture demonstrates the
potential of the proposed framework as an innovative solution to enhance compu-
tation for sustainability, by monitoring and analysing pending global challenges
such as food security.

Future research will focus on evaluating the scalability and broader impli-
cations of this approach within more complex network topologies and federated
ecosystems of Digital Twins in different domains. It will also refine the under-
lying architecture by incorporating new patterns and cognitive principles, and
integrating human-in-the-loop modalities and expert knowledge, contributing to
an extended suite of reference architectures for Federated Digital Twins [32,33].
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