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Abstract. This paper introduces a novel measure to quantify struc-
tural information in hierarchical graphs. It addresses the limitation of
current methods that do not adequately account for hierarchical struc-
tures. By considering inner structural information and distinguishability
of higher-level vertices, the proposed measure captures the additional
information generated by the hierarchy. The hypothesis that hierarchi-
cal graphs contain more structural information is validated using the
“Countries” dataset. The results demonstrate a measurable increase in
the information content when the hierarchical structure is considered,
compared to a simple graph representation. This highlights the impor-
tance of recognizing and utilizing hierarchy to enhance the informational
richness of graphs, potentially improving the performance of graph-based
machine learning models.
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1 Introduction and Motivation

The question of how much information is gathered in a graph, considering its
topology and hence the structure, has been researched since the mid-20th cen-
tury. The subject is brought to light by recent advances in machine learning in
cases where there is a need to learn, classify, or regress information expressed
with graphs. The reason for this is that information quantity addresses the qual-
ity of the data set. The more information there is in the graph, the more reliable
Graph Neural Networks (GNNs) or graph embeddings would be.

Although the graph structure information quantity measure for general graphs
is known, there is little research regarding hierarchical graphs. And this is the
subject we want to address. We will focus on structural information in a case
for which a hierarchical graph is available or a hierarchy can be identified unam-
biguously. In such a case, which is supported by real-world examples, additional
information that is provided as edge or node labels, can express a hierarchy
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within the graph, transforming it into a hierarchical graph. As a result, a part
of the graph semantics is turned into its structure. Our hypothesis is that the
amount of structural information in such a structurally extended graph is greater
than the initial one. To support this hypothesis, we would like to present a mea-
sure and apply it to a real-world example.

It should be stressed that this paper addresses the problem of the structure
of relational data in the context of machine learning. The proposed method-
ology, however, goes beyond pure computer science and refers to cybernetics.
Namely, the method can be used to analyse the complexity of multi-levelled
social networks [2] as well as biological systems that are hierarchical by their
nature [31]. The biological application are crucial because, in contemporary bi-
ology, the role of information and its processing is regarded as fundamental [11,
19]. The presented approach can also be applied to theoretical foundations of
embodied autonomous agents, that act in their environment and create knowl-
edge about it [4]. Such knowledge is usually modelled as hierarchical formal
structures.

In the following sections a brief introduction to complex data structures
for machine learning and a proposal of an information quantity measure for
hierarchical graphs are given. Furthermore, a real-world example dataset in the
form of a graph with well established hierarchy is also presented along with the
calculations of information quantity.

1.1 Graph Data Structures in Machine Learning

Graph data structures are fundamental for machine learning applications that
require relational modeling. A graph consists of nodes (also called vertices) and
edges, representing entities and their relationships. This structure allows ma-
chine learning models to effectively handle non-Euclidean data, making them
well suited for social network analysis, recommendation systems, and biological
modeling [24]. A major advantage of using graphs in machine learning is their
ability to capture complex dependencies between data points. Unlike traditional
vector-based models, graph-based approaches incorporate relational information,
enabling better performance in structured data environments [21]. This is par-
ticularly valuable in semi-supervised learning, where labeled data is limited but
unlabeled data can still contribute to learning by propagating information across
connected nodes [28].

One of the most important techniques in graph-based learning is graph em-
bedding, which transforms graph data into lower-dimensional vector representa-
tions while preserving structural properties.

As graph-based machine learning continues to evolve, more and more research
is focused on enhancing scalability, interpretability, and robustness to expand its
applicability across various domains.
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1.2 Hierarchical Graph Data Structures and Their Applications in
Machine Learning

Hierarchical graph data structures extend beyond traditional graphs by introduc-
ing multiple levels of abstraction, where each level represents a transformation
of the previous one. These structures effectively model complex relationships in
large-scale datasets, enabling machine learning algorithms to leverage multi-scale
information efficiently. Unlike simple graphs, hierarchical graphs allow nested
relationships while maintaining graph-based flexibility, making them ideal for
applications in NLP, computer vision, and bioinformatics [23].

A significant use case of hierarchical graphs is the Hierarchical Graph Neural
Networks (HGNNs), where graph representations are refined across multiple lev-
els to enhance feature extraction. In NLP, they help capture sentence structures
and contextual dependencies, improving text classification and sentiment analy-
sis [32]. In bioinformatics, hierarchical graphs model molecular interactions, im-
proving drug discovery and protein structure prediction [20]. Hierarchical struc-
tures also benefit computer vision, where multiresolution graph representations
improve image segmentation, object recognition, and scene understanding. In
autonomous systems, hierarchical graph-based models facilitate efficient deci-
sion making by structuring sensor data for multiscale reasoning [38]. As ma-
chine learning tasks grow in complexity, dynamic hierarchical graph models,
that adapt to changing relationships, are developed. This is particularly useful
in fraud detection, social network analysis, and recommendation systems, where
interactions between entities evolve. Recent advances in Graph Attention Net-
works (GATs) with hierarchical structures have improved model interpretability
and efficiency in handling large-scale data [27].

With continued advancements, hierarchical graph-based learning is expected
to further enhance performance across AI-driven applications.

1.3 Graph Embeddings

A graph embedding technique transforms relationships in a graph into lower
dimensional space, namely a vector with fixed length, while preserving as much as
possible of the structural information and properties. Having a set of fixed-length
vectors that represent nodes makes them easier to analyze and more suitable for
machine learning. It enables tasks such as node classification, recommendation,
link prediction, graph completion, or clustering, to name a few, on graph data
with vector-based machine learning concepts and technologies.

There are multiple graph embedding techniques that can be used with varying
applicability depending on the actual characteristics of the graphs [34] with
some benchmarks [13] and taxonomy [9], available. One of the challenges is to
verify if the embeddings preserve semantics [15]. As it has been observed, the
sparsity of graphs degrades embedding performance greatly [29]. Performance
gains reported for one graph type may not translate to other types of graphs. It
is also challenging to compare different embedding methods and predict which
one will be best for a given graph [13]. There is no standard way to quantify
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the advantages of one approach over another. Many methods are evaluated on
dense, curated datasets that do not reflect the complexities of real-world graphs.

1.4 Graph Neural Networks

Graph Neural Networks are a class of deep learning models designed to process
graph-structured data. Unlike traditional neural networks that operate on Eu-
clidean data (e.g., images and text represented as vectors), GNNs can model
relationships in non-Euclidean spaces. They achieve this by iteratively aggre-
gating information from neighboring nodes, capturing both local and global de-
pendencies within the graph [39]. A key property of GNNs is their ability to
leverage relational information rather than treating data points as independent
entities [18]. This makes them particularly effective in domains where intercon-
nected data is essential. Their inductive learning capability enables them to
generalize unseen graphs [35], and their flexibility allows them to process vari-
ous types of graphs, including directed, undirected, weighted, and heterogeneous
structures [37].

Compared to traditional machine learning models that rely on handcrafted
features, GNNs automatically learn hierarchical and context-aware representa-
tions, improving performance in node classification, link prediction, and graph
clustering. They are widely applied in social network analysis (e.g., community
detection and friend recommendation) [18], biomedical research (e.g., protein
structure prediction and drug discovery) [37], and fraud detection by analyzing
transaction networks for anomalies. In natural language processing (NLP), they
enhance tasks such as semantic parsing and document classification by captur-
ing contextual relationships [35, 8, 36]. Furthermore, GNNs contribute to traffic
prediction and optimization in autonomous systems [22]. By exploiting graph
structures, they enable more accurate and context-aware predictions, making
them a crucial tool in modern deep learning.

2 Entropy-based Information Quantity for Graph-based
Hierarchical Structures

Before starting any machine learning process, the dataset has to be assessed
if it is up to providing proper input for the model. Especially, it has to be
confirmed if the data quantity and quality are sufficient. In case of vectors, there
are several heuristics and methods that work well. For graphs, one should begin
with assessment of how much structural information there is in it, to make sure
that there is enough information to feed the subsequent learning process.

To measure amount of structural information in a graph, there are two start-
ing points to consider. One point is to start with the graph entropy [26], which is
based on information theory. Another one begins with an ontology, which results
in the Hellerman’s approach [14]. Even though their starting points are different,
the end results are quite similar, being a single measure of information quantity.
In this paper, we choose to apply the Hellerman’s approach.
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However, in case of graphs where a hierarchy can be identified, the proposed
Hellerman’s approach is lacking. This includes hierarchical graphs or graphs in
which such hierarchy could be identified or inferred, based on semantic informa-
tion such as edge or node labeling.

In this section, we put forward a proposal of such a measure that is suitable
for hierarchical graphs or graphs with identifiable hierarchy.

2.1 Hierarchical Information

Hierarchical information appears when substructures of a given structure or a
group of elements of a given set constitute a single element in a new structure
or set at the higher level of hierarchy. Then, among such new elements novel
relations can appear. Let us formalize this idea on the basis of the concept of
structural information signalized in [3], worked out in detail in [5] and applied
to cognitive maps in [6]. Thus, let X be an k-element set with a relation R
on it that generates the directed graph (digraph) G(X,R). Let us recall that
the nodes of G(X,R) correspond to elements of X, whereas the directed edges
connect the nodes that correspond to elements in relation to each other [5]. To
put it briefly, the form of the graph G(X,R) is the structural information on the
set X, that is generated by relation R. The amount of such information can be
calculated numerically by applying the concept worked out by Hellerman [14],
as follows.

H = −N

K∑
k=1

nk

N
log

nk

N
(1)

where N is the number of vertices in the graph, K is the number of equivalence
classes and nk is the number of vertices belonging to class nk.

It should be mentioned that the way in which the information in graphs can
be calculated was studied since the fifties of the 20th century, but it was referred
to entropy in graphs and not to ontological aspects of structural information as
such [12, 25, 26, 30, 33]. The formulae used to calculate the amount of information
in graphs were consistent in Shanon information theory, Hellerman’s concept,
and the idea presented in [5].

Let us consider the way in which the amount of information can be calculated
in hierarchical structures. The mentioned set X with relation R constitutes the
first level of the hierarchy, on which both the information and the way the
amount of it is calculated, are given in [5] – see Fig.1 as an example, where
X = {x1, ... , x11} and relation R generate the digraph G(X). Let P (G) denote
the set of all subgraphs of G(X,R). Let N be the cardinality of P (G). From the
set P (G) there are selected elements that will constitute components of the set,
let us say X , on the next level of hierarchy. Let us assume that card X = n ≤ N.
Then, the amount of information Hc, generated by the choice of the number of
the elements of X , is equal to

Hc = −N

(
n

N
log

n

N
+

N − n

N
log

N − n

N

)
. (2)
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Fig. 1. Example of hierarchical information
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The elements of X are graphs themselves, so each element has an inner structure
and, as a consequence, inner structural information. Thus, for each element of
X , its amount of structural information can be calculated in the same way as
for graph G(X,R). Let a relation R be defined on X . It generates the digraph
G (X ,R) at the second level of the hierarchy – see Fig.1. For this graph, the
amount of information can be calculated in the same way as for graph G(X,R).

In summary, selecting elements that constitute higher-level components in a
hierarchical structure generates three types of information:

(a) information generated by number of the chosen elements – amount of this
type of information is given by formula (2);

(b) inner structural information of every element on the higher level;
(c) information generated by the distinguishability of higher-level vertices re-

sulting from their internal structure.

3 Computing the Hierarchical Information of an Example
Dataset

Let us introduce an example, a real-world dataset, and calculate the amount of
structural information for it. Then, let us identify its hierarchy and compare the
amount of structural information when the hierarchy is taken into consideration.

3.1 The Dataset

The “Countries” dataset [7], provided by PyKEEN (Python KnowlEdge Embed-
diNgs) [1], will be used to demonstrate the computation of hierarchical infor-
mation. The motivation for using this dataset is its relatively small size, ease of
interpretation of actual data, and the fact that it can be turned into a hierar-
chical structure easily and consistently.

The dataset consists of countries, regions that group countries and continents
that group regions. These three kinds of nodes are not explicitly differentiated,
but the type of node can be deduced based on its connections, namely edge labels.
The dataset contains two kinds of edges differentiated by labeling: “neighbor”, a
symmetric relationship denoting that two countries are next to each other, and
“locatedin”, which denotes a lower-level entity belonging to a higher-level entity.
As a result, the semantic information encoded with the “locatedin” labels can be
used to build the hierarchy providing additional structural information.

An excerpt from the dataset considering two countries, namely Czechia and
Poland is given in Fig. 2. The hierarchical decomposition of the excerpt is given
in Fig. 3. There are edges labeled “locatedin” between countries and regions,
namely “Czechia”–“Eastern_Europe” and “Poland”–“Eastern_Europe”, and be-
tween regions and continents, which is “Eastern_Europe”–“Europe”. They create
a three-level hierarchy with “Poland”, “Czechia” and other neighboring countries
at level 1, “Eastern_Europe” at the level 2, and “Europe” at the level 3.
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Fig. 2. An excerpt from the “Countries” dataset.
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Fig. 3. An excerpt from the “Countries” dataset decomposed into a 3-level hierarchy,
the decomposition is based on the “locatedin” label.
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3.2 Data preparation

The dataset must be slightly adjusted, as there is a name conflict: Micronesia
is both a country and a region, and in the original dataset there is a loop edge
“Micronesia is located in Micronesia” which causes ontological ambiguity. It is
just a mistake in the dataset. In order to fix it, the country of Micronesia will
be assigned a non-conflicting name.

After converting the graph to a hierarchical form, there are 244 countries,
23 regions, and 5 continents, forming consecutive levels of hierarchy. The set of
countries will constitute the initial set X from section 2.1. The “neighbor” rela-
tion remains as connections between countries, like the relation R from section
2.1, and the “locatedin” relation describes the composition of higher-level nodes
from lower-level nodes. The initial graph G(X) is generated by the relation R.

3.3 Results

The calculations were performed using the Python programming language, with
the igraph network analysis library [10] to handle the graphs, using the bliss
isomorphism algorithm [16, 17].

As described in chapter 2.1, introducing hierarchy creates additional infor-
mation which is dependent on two consecutive levels of hierarchy and includes
information (a) generated by the number of chosen elements, (b) inner structural
information and (c) generated by distinguishability.

Information (a) for the second layer (regions over countries) is 109.9, given by
formula 2, choosing a set of 23 elements of higher level over a set of 244. Similarly,
for the third layer (continents over regions), it is 17.4, choosing 5 elements over
a set of 23.

Information (b) for the second layer is 570.8, as a sum of information given
by formula 1 for each subgraph belonging to a higher-level vertex, where the
equivalence classes are defined as in [5], equivalent to automorphism groups.
Information (b) for the third layer is zero because there are no connections
between regions in the dataset. It could be possible to infer missing neighbor
relations between regions and continents based on connections of countries that
belong to them, but it was decided against it, in order to avoid any unnecessary
data transformations and also to prevent introduction of any inferred information
which could affect final results.

Information (c) is 102.0 for the second layer and 4.9 for the third layer. It
is calculated using formula 1 with vertices grouped into equivalence classes by
inner structure distinguishability: two higher-level vertices are indistinguishable
if the lower-level subgraphs belonging to them are isomorphic.

The amount of information in the entire graph in the Hellerman sense [14]
as defined in [5] is 1956.1, without taking into account hierarchical structures.
When interpreting the data set hierarchically, the amount of information in the
initial graph is 1424.8, as the graph is now smaller.

The sum of information due to all the levels of hierarchy is 805.0, which when
added to information generated by the initial graph constituting the first layer,
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is 2229.8. This value is greater than the amount of information in the graph
in the non-hierarchical interpretation, which shows that the introduction of the
hierarchy creates additional information, resulting in an increase of almost 14%.
The comparison of the two interpretations can be seen in Fig. 4.

struct.: 1424.8
sum: 2229.8

Countries

Regions

Continents

Countries

Regions

Continents

struct.: 1956.1

(a) struct.: 109.9
(b) inner: 570.7

(c) distinguish.: 102.0

(a) struct.: 17.4
(b) inner: 0.0

(c) distinguish.: 4.9

Fig. 4. Comparison of computing the information in the “Countries” dataset with a
hierarchical interpretation (on the left) versus interpreting it as a single graph (on the
right).

4 Summary

We propose a novel measure for quantifying information in hierarchical graphs
which is influenced by existing concepts of graph entropy and especially Heller-
man’s ontological approach. It accounts for the additional information generated
by the hierarchy itself, considering factors such as the number of chosen elements,
inner structural information, and distinguishability of higher-level vertices.

To validate the hypothesis that hierarchical graphs contain more structural
information, the proposed measure is applied to the “Countries” dataset. When
comparing the information content, if treated as a simple graph versus a hier-
archical one, the results demonstrate a significant increase in information if the
hierarchical structure is taken into account. Identifying a single edge label that
forms the hierarchy increases the amount of information by almost 14%. As a
result, it supports the argument that recognizing and utilizing the hierarchy en-
hances the informational richness of graphs. It might provide better metrics for
the quantity of information in graphs, indirectly improving the performance of
graph-based machine learning models.

Further research focuses on investigating the relationship between the pro-
posed measure and the quality of graph embeddings and the performance of
graph neural networks. In particular, the following problems can be put as ex-
amples.
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1. Will taking into account hierarchical information improve or optimize graph
embedding algorithms?

2. There is a GNN with its input being a graph and output a vector. Can the
hierarchical information within the input graph be taken into account and
does it impact prediction quality?

3. Will including the hierarchical information in graph embedding algorithms
pose any opportunities or risks.

4. How to encode the hierarchical information as a GNN input. How does it
influence GNN’s architecture?

5. Does the hierarchical information concept proposed in this paper optimize
hierarchical graph embedding problem?

These are the most immediate goals, but the research can go further, beyond
this scope, taking into account social networks, biology, biological systems or
autonomous agents, as it was mentioned in the introduction.
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