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Abstract. Considering the vulnerability of machine learning to adver-
sarial attacks, the state-of-the-art malware detectors are designed with
appropriate ensembles. However, most ensemble detectors are developed
based on unreasonable and weak threat assumptions, which do not match
the characteristics of real-world adversaries with powerful adaptive mixed
capabilities. Such detectors will unavoidably suffer severe failures in prac-
tical deployment. To this end, we build two realistic powerful adver-
sary models and propose NashAE as a robust malware detector based
on a novel Game-theory-enabled ensemble adversarial training approach
against them. Specifically, NashAE establishes a Minimax Game where
the adversary and detector compete on opposing targets. By solving the
Nash equilibrium of the game, NashAE can obtain the optimal ensemble
adversarial training strategy under adversaries’ constantly adaptive at-
tacks. Since the game has no closed-form solution, we further develop a
simplified solution scheme based on Bayesian optimization to find the ap-
proximate Nash equilibrium of the game. We conduct comprehensive ex-
periments with 10 baseline detection models on 2 malware datasets. Ex-
perimental results show that NashAE can achieve a stable detection rate
of 58% higher than advanced methods after only 15 iterations against
the most powerful adversaries.

Keywords: Malware detector · Adversarial defense · Nash equilibrium
solution · Game theory · Ensemble learning · Network security.

1 Introduction

The deep integration of 5G and satellite networks as communication carriers
for critical infrastructure (e.g., new distribution grid systems) has expanded the
propagation radius of malware from terrestrial systems to space networks. One
of the mainstream solutions identifies malware based on network traffic since
traffic can capture all behaviors in the network [15,17,21]. By analyzing whether
the traffic is benign or malicious based on machine learning techniques, mal-
ware can be detected. Although these detectors have achieved certain success in
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practice, they are vulnerable to adversarial attacks [10]. Through adding care-
fully designed adversarial perturbations to malware traffic, the adversarial attack
can trick detectors to identify malware traffic as benign. Then these adversarial
malware traffic will escape the detector’s detection, so that the corresponding
malware can commit malicious activities without any hindrance.

To robustly detect malware traffic even in the presence of adversarial per-
turbations, detectors based on ensemble learning are considered a promising
solution, since adversaries have to generate adversarial malware traffic that can
confront all base models [8, 14]. Nonetheless, the transferability of adversarial
samples renders simple ensemble detectors still unreliable [20]. To further protect
against those transfer-based attacks, ensemble adversarial training approaches
have been introduced [7,9,16,18], which allow the detector to pre-learn the fea-
tures of the adversarial traffic in the ensemble training phase. However, when
facing real-world adversaries, these advanced detectors are still indefensible be-
cause their ensemble strategies are usually developed based on unrealistic and
weakness adversarial attack assumptions. More precisely, the characteristics of
adversarial traffic learned by them do not match the real adversaries.

Firstly, existing ensemble adversarial training strategies are usually tailored
to individual adversarial perturbation types, whereas real-world adversaries are
much more sophisticated and powerful. For one thing, in reality, there are mul-
tiple adversaries from different organizations with different goals to generate
various types of adversarial perturbations. For another, adversaries will have
varied attack strategies thanks to open-source adversarial attack tool [2]. Aim-
ing to achieve strong evasion performance, powerful adversaries tend to launch
hybrid attacks that mix multiple attack strategies. Further, there are also more
powerful adversaries even can adaptively adjust their hybrid attack strategies
based on the detector’s detection results. With this regard, in the ensemble ad-
versarial training phase, practical detectors have to consider adversaries with
mixed attack schemes or even adaptive mix attack schemes, rather than the
current simple individual attack schemes.

Secondly, existing ensemble adversarial training strategies usually neglect
the traffic-space constraints and knowledge limitation of practical adversarial
attacks [3]. For one thing, after adding adversarial perturbations, adversarial
malware traffic must still follow the specific semantics of communication pro-
tocols. Only such adversarial traffic is effective. However, existing detectors di-
rectly learn all adversarial traffic features, causing not only limited improvement
in robustness but also leading to detection performance degradation and some-
times even creating more vulnerabilities for detectors. For another, adversaries
have no access to their target detectors in reality, while most ensemble detectors
learn features of the adversarial samples generated based on the white-box as-
sumptions [13, 19]. It is clear that such adversarial traffic features are not fully
consistent with adversarial traffic generated in real-world settings. This further
limits the robustness improvement by the ensemble adversarial training.

To address the above challenges, we build two realistic threat models and
propose NashAE as a robust ensemble malware detector based on a novel Game-
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theory-enabled ensemble adversarial training. By building and solving a Minimax
Game where the adversary and detector compete based on the opposite target
in the ensemble adversarial training phase, NashAE automatically updates its
ensemble strategy according to adversaries’ constantly adaptive attack scheme.
The main contributions of our work are summarized as follows:

– NashAE Detector against Real-World Powerful Adversaries. We
design NashAE ensemble detector which is based on game theory to address
the challenge of practical adversaries’ adaptive mixed adversarial attacks. By
establishing a Minimax Game, NashAE simulates the process that the ad-
versaries continuously adjust their attack scheme and detector continuously
selects its optimal ensemble strategy. Based on this more realistic dynamic
process, NashAE has greater potential to defend against the admixture and
changing nature of adversarial attackers in real world.

– Practical Threat Model Building. We build two practical threat mod-
els, M-TBA and AM-TBA, that more closely reflect real-world powerful at-
tacks. Under the M-TBA model, adversaries launch black-box attacks that
are mixed and conform to the traffic-space constraints. Under the AM-TBA
model, adversaries launch black-box attacks that can adjust their mixed
schemes with a certain adaptive ability and conform to the traffic-space
constraints. In particular, via a well-designed remapping function, the ad-
versarial traffic can strictly satisfy the traffic-space constraints.

– Simplified Solution to Nash Equilibrium. Since Minimax Game has no
closed solution, typical gradient-based algorithms will fail to solve the Nash
equilibrium that ends the game. To address this problem and achieve rapid
response in security field, we provide a simple solution method with rela-
tively less calculation times. Specifically, we convert the Minimax Game into
two related Markov Decision Processes (MDPs) and solve them by Bayesian
optimization. The solutions of MDPs can be considered as the approximate
Nash equilibrium, which is used to obtain optimal ensemble strategy.

– Comprehensive evaluations of NashAE. We evaluate our realistic at-
tack and defense methods with 2 encrypted malware traffic datasets using
10 detection strategies in both M-TBA model and AM-TBA model. Ex-
perimental results demonstrate that NashAE can defend against realistic
attacks with stable high performance after only 15 iterations, outperforming
other advanced methods by at least 40%. Besides, we verify the feasibility
of black-box attacking methods based on the transferability of adversarial
perturbations according to our experiments.

2 Related Works

2.1 Adversarial Attack to Malware Detectors

Machine learning techniques have been widely used in malware traffic detec-
tion [15,17,21]. Thanks to the powerful classification capability of machine learn-
ing, these detectors achieve certain success in practice. Unfortunately, Rigaki et
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al. [13] demonstrate that traffic detectors based on machine learning are vulner-
able to adversarial attacks. By adding adversarial perturbations that maximize
the loss function of target detectors, adversarial attacks can cause detector mis-
classification. Considering the widespread encryption protocols such as HTTPS,
Novo et al. [10] implement adversarial attacks take account into encryption traf-
fic. Since attackers hardly have knowledge of target detectors, transfer-based
adversarial attacks [5, 12, 24] are proposed to perform black-box attacks. These
attacks first create substitute models of their target detectors, and then generate
adversarial malware traffic based on the fully accessible substitute models. Ben-
efiting from the transferability of adversarial examples, this adversarial malware
traffic has the potential to trick target malware detectors.

2.2 Ensemble detectors against adversarial attacks

Malware detectors based on ensemble learning are considered a potential way
to defend against adversarial attacks [7]. Nevertheless, some works demonstrate
that detectors based on ensemble learning are still insufficient to robustly defend
against adversarial perturbations [22, 23]. For example, Zhang et al. [23] show
that discrete-valued tree ensemble models can be easily attacked by adversarial
examples generated according to the models decision output.

To further improve the robustness of the ensemble model, ensemble adver-
sarial training strategies [16] are proposed. Specifically, Tramer et al. [16] first
augment training data with adversarial perturbations transferred from other
models to increase the robustness of ensemble detectors. Following them, also
some studies show robust defense ways for adversarial attacks via ensemble ad-
versarial learning [9,18]. However, due to unrealistic assumptions of adversaries,
these detector ensemble strategies are fixed and learn some features of adversarial
traffic that do not satisfy the traffic-space constraints. This inevitably invalidates
their robust defense strategies against realistically powerful adversaries. Further,
Shu et al. [14] propose the Omni ensembles models, whose hyperparameters are
controlled to make the attacker’s target model far away. Based on their idea of
hyper-parametric control, Omni has a certain ability to defend against powerful
adversaries with mixed strategies (i.e., the M-TBA threat model). But it will
be vulnerable to more powerful adversaries that can dynamically and adaptively
adjust their mixed attack strategies (i.e., the AM-TBA threat model).

3 Overview of NashAE Ensemble Detector

In this section, we will briefly introduce the overall structure of our NashAE
ensemble detector, which is capable of robustly defending against the admixture
and adaptive nature of adversarial attackers in the real world.

As shown in Fig. 1, NashAE enhances detection robustness through a novel
ensemble adversarial training approach. Considering that the most powerful ad-
versaries have mixed attack schemes and adapt their attack schemes according
to attack performance and defense strategies, NashAE is adversarially trained
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Fig. 1: The overall structure of NashAE ensemble adversarial training approach.

with a dynamic ensemble strategy. To describe the dynamic process in which
the detector adjusts its ensemble strategy in line with adversaries’ constantly
adaptive attack schemes, NashAE establishes a Minimax Game. The two play-
ers of the game are practical adversarial attack generation (PA2G) and Bayesian
adversarial ensemble learning (BayesAE).

Among them, PA2G simulates a realistic adversary with mixed adaptive
attack scheme, and BayesAE simulates an ensemble detector with dynamic en-
semble strategies. Before the game starts, PA2G has a range of base adversarial
attack resources a1, a2, ..., an that can generate a series of adversarial malware
traffic ta from the malicious traffic tm. BayesAE has a range of base malware
detection resources f1, f2, ..., fk that aim to detect all malware traffic. The two
players align their strategies toward opposite targets during the game. PA2G
tries to find a series of base adversarial attack weights wa = {wa1, wa2, ..., wan}
that maximum attack success rate (ASR), so that the realistic adversary can
best fool the current ensemble detector. Meanwhile, BayesAE tries to adjust a
series of ensemble weights we = {we1, we2, ..., wen} that minimize the ASR, so
that the ensemble detectors can best robust against the current attack. Let g(·)
denote the objective ASR that the two players want to maximize/minimize, then
the minimax game can be described as:

min
wei∈we

max
wai∈wa

g(we,wa) (1)

Since they compete on opposite directions of ASR, the game will reach a Nash
equilibrium, which is the solution of the most robust ensemble detector. Detailed
strategies of the two players are described below.
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4 Practical Adversarial Attack Generation (PA2G)

As one player of the Minimax Game, PA2G aims to generate a series of optimal
adversarial malware traffic that meets the characteristics of real-world power-
ful adversaries, which can be used as part of samples for ensemble adversarial
training. The detailed design principle of PA2G will be elaborated in this section.

4.1 Threat Model

Since it is difficult for adversaries to obtain detailed knowledge of their target
detector in reality, adversarial attacks are usually performed under black-box
scenarios. Considering that the network will automatically drop non-compliant
packets, only adversarial malware traffic that satisfies the traffic space con-
straints is effective. For a high attack success rate, real-world adversaries usually
launch attacks that mix multiple schemes. Depending on whether the adversary
can adaptively adjust their attack mixed scheme, we define the following 2 threat
models, aiming to match the characteristics of a realistic and powerful adversary.

1. M-TBA: As a mixed traffic-space black-box attack, M-TBA has no adap-
tive capability. In this case, adversaries launch attacks based on the average
mixed scheme, rather than mixed schemes with different weights. Thus it
can be directly defended without establishing the Minimax Game.

2. AM-TBA: As an adaptive mixed traffic-space black-box attack, AM-TBA
can constantly adapt its mixed scheme according to the current attack per-
formance and defense strategies. In this dynamic case, we have to establish
a game to solve the most robust detector ensemble strategy.

To obtain an optimal detection ensemble strategy with the upper robustness
performance, PA2G simulates the most powerful adversaries AM-TBA. It is
clear that the detection strategy obtained from AM-TBA threat model also can
robustly resist the M-TBA threat model. Detailed principles are as follows:

· Principle of Mixed Attack In the case of M-TBA, the adversary has multi-
ple adversarial attack methods a1, a2, ..., an with a series of fixed mixture weight
factor wa1, wa2, ..., wan, aiming to evade the detection of ensemble detector f
that integrates multiple base detectors f1, f2, ..., fk with a certain strategy.

· Principle of Adaptive Mixed Attack In the case of AM-TBA, we solve
adversary’s optimal attack mixed scheme by establishing the Minimax Game. As
shown in Fig. 1, there are multiple adversarial attack methods a1, a2, ..., an in
PA2G. To effectively attack the ensemble detector f that integrates multiple base
detectors f1, f2, ..., fk with a certain strategy, the adversary will mix a1, a2, ..., an
by a series of weight factor wa1, wa2, ..., wan.

· Principle of Black-Box Attack: Since we consider black-box scenarios that
adversary has no knowledge of f , adversaries cannot directly find appropriate
adversarial perturbations δ according to f . To this end, they first locally train
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an ensemble model f ′ as the substitute model of target detector f . Then δ can
be generated according to substitute model f ′, which is considered effective per-
turbation to f . By adding δ to malware traffic tm, PA2G can obtain adversarial
malware traffic ta that has the potential to trick the current f .

· Problem Modeling: For a successful attack in practice, ta needs to be de-
ceptive (i.e. misclassified as tm by the detector based on its extracted feature
ϕ(ta)), and satisfy traffic-space constraints Θ. This problem can be described as:

argminta f
′ (ϕ′(ta)) + λL(ta, tm) s.t. ta ∈ Θ(tm) (2)

where ϕ′(ta) represents the extracted feature of adversarial malware traffic ta, λ
indicates a parameter that determines the feature transformation cost from f ′ to
f , L is the loss function of f , and Θ(tm) represents the traffic-space constraints
with the same malicious function and communication protocol as tm.

· Adversarial Malware Traffic ta Generation: To generate adversarial mal-
ware traffic ta satisfying the traffic-space constraints, we take the following two
steps. First, we generate adversarial feature xa from a clean input xm in feature
space. Second, we design a remapping function M to project xa to obtain the
ultimate traffic-space adversarial traffic ta, which is satisfying the traffic-space
constraints. Details will be introduced in Sec. 4.2 and Sec. 4.3, respectively.

4.2 Generating Adversarial Features xa

To find the optimal adversarial perturbation δ that can trick the substitute
model f ′ to identify adversarial malware feature xm + δ as a benign feature xb,
we need to maximize the loss function L′ of f ′. Let y represents the output label
by f ′ according to the input features, the optimization problem for optimal δ
can be expressed as:

maxL′(f ′(xm + δ), y) (3)

To solve the above optimization problem, a common method is to find δ along
the gradient ascent direction of loss function L′. Unfortunately, there are non-
differentiable tree models in the ensemble substitute model f ′ trained locally by
the adversary. This will cause the classical gradient ascent method to not work.
Inspired by [6], we consider evaluating the gradient of loss function based on
Natural Evolutionary Strategies (NES). Then the gradient ascent algorithm can
be performed according to the estimated gradients.

Specifically, loss function L′(θ) can be approximated as L′(θ + ξ) through
adding a series of search noise ξi with distribution π(θ|xm). Rather than directly
maximizing L′(θ), NES maximizes the expected value of the loss function under
the search distribution. By sampling n points of ξi values that obey ξi ∼ N (0, I),
the gradient G can be estimated by:

G ≈ ∇E[L(ξ)] = 1

σn

n∑
i=1

ξiL (θ + σδi) (4)
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Based on the estimated gradient G of substitute model f ′ loss function, at-
tackers can iteratively find optimal perturbation δ along the direction of gradient
ascent. Then the adversarial features xa can be generated by xa = xm+δ. Thanks
to the transferability of adversarial attacks, xa can trick the target detector f
with certain effectiveness.

4.3 Projecting Adversarial Features xa to ta in Traffic Space

Adversarial traffic generated in practice should strictly satisfy the traffic-space
constraints, that is, follow the communication protocol and preserve the mali-
cious functionality of malware. To enforce these domain constraints, we use the
remapping function M to adjust the perturbed features. There are some inherent
characteristics of network traffic, such as flow-based features cannot be changed
by attackers, some features depend on other features. For a more reasonable
feature remapping, we group traffic features into the following four categories:
1. Features with unchangeable value: To maintain the malicious function

of the original malware, some features shouldn’t be changed because they
are extracted from backward packets (i.e., victim packets).

2. Features with zero value: To prevent modified adversarial traffic from
being directly dropped by the network, the modified features have to main-
tain the correctness of the network protocol. This requires certain features
to have eigenvalues of 0 (e.g. the value of ‘TCP flag’).

3. Features with valid interval boundaries: Based on our analysis of dif-
ferent types of malware traffic, we found that there are upper and lower
bounds on the value of each feature for different malware traffic, i.e., these
feature values have validity intervals. In order to maintain the original ma-
licious function, it is necessary to ensure that the modified feature values
remain within the valid interval boundaries.

4. Features depending on other features: Since existing feature extractors
usually extract statistical features of encrypted traffic, there is a correspon-
dence between some feature values computed based on the same attributes.
That is, if one feature value is modified, the feature values of other related
features need to be changed accordingly.

We design remapping function M to restrict the adversarial malware traf-
fic generated by modifying the traffic features to satisfy the above four types
of constraints. The remapping function M mainly takes three technical solu-
tions, which are masking, clip, and equation constraints. For the features with
unchangeable values, M uses the masking technique to refuse adversaries to per-
turb these features when generating adversarial samples. For the features with
zero value and the features with valid interval boundaries, M uses the clip tech-
nique to ensure that the perturbed feature values are 0 or within bounds. For the
features depending on other features, M uses equation constraints to maintain
the correlation between the feature values. According to M, we can map the ad-
versarial malware features xa to the adversarial malware traffic ta that satisfies
the traffic-space constraints. Obviously, ta has the potential to evade detection
by f , and will not be dropped by the network since network can understand it.
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5 Bayesian Adversarial Ensemble Learning (BayesAE)

As the other player of Minimax Game, BayesAE aims to obtain a more robust en-
semble detector with a dynamic ensemble strategy. The ensemble strategy when
the game reaches Nash equilibrium is capable to defend against the current real-
world adaptive mixed adversarial attacks. To solve the Nash equilibrium with
little computation times, BayesAE provides a simplified solution. The detailed
design principle of BayesAE will be elaborated in this section.

5.1 Dynamic Ensemble Strategy of Detector

To deal with the adaptively mixed attack of real-world adversaries, BayesAE
constantly adjusts the ensemble strategy of NashAE according to current adver-
saries’ attack schemes. This process is described as a Minimax Game between
PA2G and BayesAE, which is shown in Fig. 1. Specifically, the adaptive adver-
sary constantly updates its mixed attack scheme that is composed of multiple
attacks a1, a2, ..., an with different weights wa = wa1, wa2, ..., wan. Each update
is performed with the goal of maximizing its attack success rate (ASR). Aim-
ing to defend against every mixed attack launched by the adversary, NashAE
constantly reconfigures a series of ensemble weights we = we1, we2, ..., wen of
multiple detector models. Each reconfiguration is performed with the goal of
minimizing the updated ASR.

In each round of the game, PA2G and BayesAE evaluate ASR under the
current strategies. To maximize and minimize ASR by the two players, we update
the ensemble learning weights we of ensemble strategy and the adversarial attack
weights wa by Bayesian optimization. After multiple rounds of fictitious play,
the ensemble strategy based on converged we will be robust to the adaptive
mixed attack schemes. This game process can be formulated as:

min
wei∈we

max
wai∈wa

g(we,wa)

s.t. g(we,wa) =
∑n

i=1 waiL (ai(x), y)

(5)

where g = ASR is the objective function that represents what we want to
minimize/maximize, L is the loss function of the ensemble detector. For i ∈ [1, n],
ai is a series of base attacks and n is the number of base attack types.

5.2 Solving Approximate Nash Equilibria

In order to obtain the most robust ensemble strategy w∗
e , we need to find the

Nash equilibrium solution of the above Minimax Game. Inspired by [3], we con-
vert the Minimax Game into two Markov decision processes, aiming to simplify
computation. The two Markov decision are the process of finding optimal w∗

e

and the process of finding optimal w∗
a, respectively. Then the Nash equilibrium

solution can be represented as (w∗
e , w

∗
a).
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With the goal of simplifying the solution process of (w∗
e , w

∗
a), we consider

solving an approximate Nash equilibrium rather than an exact Nash equilibrium.
Since the Bayesian optimization algorithm can save time overhead by referring
to previous evaluations when trying the next set of hyper-parameters, it can get
better results with a small number of attempts. To this end, we use the Bayesian
optimization (BayesOpt) to solve the approximate Nash equilibrium (w∗

e , w
∗
a).

Details are shown in Algorithm 1.

Algorithm 1 Solving Approximate Nash Equilibria
Input: f , Xa, Xe, S, we, wa

Output: we
∗,wa

∗

1: Initialize f , Xa, Xe, S, we, wa

2: wa = fs(f,Xa)
3: we = fs(f,Xe)
4: while : each k = 1, 2, 3, ... do
5: while : each i = 1, 2, 3, ... do
6: p(ya | Da, wa) = fit(M,Da)
7: wai = argmaxwaiϵXa S(wa, p(y|wa, D))
8: Calculate objective function yi = f(wai)
9: Da = Da

⋃
(wai, yai)

10: Increment i
11: end while
12: Adversary update attack strategies wai according to M(wa)
13: while : each j = 1, 2, 3, ... do
14: p(y | De, we) = fit(M,De)
15: wej = argminwejϵXe S(we, p(y|we, De))
16: Calculate objective function yej = f(xej)
17: De = De

⋃
(wej , yej)

18: Increment j
19: end while
20: Detector update ensemble strategies wej according to M(we)
21: end while

Specifically, there are two loops of training. The first loop is the entire game
model, and the second loop is BayesOpt. In the first loops, the adversary and
detector sample attack mixed strategy wa and detector ensemble strategies we

during each epsilon c ∈ {1, ..., k}. The current objective function g is solved
and wc

a is updated to wc+1
a . Simultaneously, the detector ensemble strategy wc

e

is also updated by g to obtain wc+1
e . In the second loop, the adversary first

randomly based on sample function fs selects several sets wa1, wa2, ...wan to
train the prior function M that is fitted to datasets Da, De, Dt, and get the
target values y. Then M is used to fit wa, y, and acquisition function S is used
to select the best w∗

a, and get the new y. Similarly, the detector’s parameters
are updated in the same way as the adversary. Finally, at a Nash equilibrium,
both the adversary and detector will not want to change their strategies (w∗

a, w
∗
e)

since they will not lead to further benefit.
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6 Experiments and Results
In this section, we conduct comprehensive experiments to evaluate the perfor-
mance of our proposed NashAE. The experimental setup and results analysis
will be described in detail.

6.1 Experimental settings

· Datasets: We use CTU13 [4] and Datacon2020-EMT [1] as encryption mal-
ware traffic datasets to evaluate our NashAE. Traffic in the two datasets is
divided into training set, validation set, and test set in a ratio of 6:2:2.

· Base Models for Ensemble Malware Detector: We implement 4 classic
machine-learning models as base models, which can be integrated with certain
strategies to construct ensemble malware detectors. They are logistic regression
(LR) model, support vector machines (SVM) model, decision trees (DT) model,
and multi-layer perception (MLP) model, respectively.

· Baselines of Ensemble Strategy: To evaluate the robustness performance
against adversarial attacks of our NashAE, we implement 4 typical ensemble
strategies and 2 advanced robust defense strategy as baselines. The typical en-
semble strategies include: 1) Bagging, 2) Adaboost, 3) Gradient boosting deci-
sion trees (GBDT), and 4) Stacking. The advanced ensemble strategies include
5) Omni [14], and 6) NashRL [3]. Besides, aiming to demonstrate the effective-
ness of NashAE ’s dynamic ensemble structure, we extra implement 7) BayesAE,
which removes adaptive adversaries from the Minimax Game.

· Evaluation Metrics: We use three typical machine learning metrics to eval-
uate the detection performance of malware detectors. To evaluate the attack
performance of adversarial attacks, we extra design attack success rate (ASR)
metric. To evaluate the robustness against adversarial attacks of malware detec-
tors, we extra design detection rate (DR) metric. Details are as follows:

1. Typical metrics: It includes precision (P), recall (R), and F1 score (F1).
2. ASR: The attack success rate measures the proportion of traffic with suc-

cessful attacks in all generated traffic.
3. DR: The detection rate represents the proportion of the generated adver-

sarial traffic that is detected by the detector within all adversarial traffic.

· Experiment preparation: For the convenience of subsequent experiments,
we pre-trained a series of malware detectors on CTU13 dataset and Datacon-
EMT dataset, respectively. As shown in Table 1, all of these detectors achieve
satisfactory detection performance with high precision, recall, and F1 score.

6.2 Effectiveness Evaluation of Transfer-based Adversarial Attacks

To evaluate the effectiveness of transfer-based adversarial attacks, we perform
adversarial attacks on each of the above 11 malware detectors. All the optimal
adversarial perturbations are found by NES algorithm. With the goal of transfer-
ability evaluation, we add adversarial perturbations generated from the current

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_2

https://dx.doi.org/10.1007/978-3-031-97632-2_2
https://dx.doi.org/10.1007/978-3-031-97632-2_2


12 S. Zhuang et al.

Table 1: Detection performance without adversarial attacks

Detectors R P F1 R P F1

CTU13 Datacon-EMT

LR 0.8961 0.9363 0.9380 0.8589 0.7248 0.7862
SVM 0.9151 0.9845 0.9485 0.8643 0.7208 0.7861
DT 0.9958 0.9983 0.9970 0.8381 0.8335 0.8358

MLP 0.9847 0.9979 0.9912 0.8326 0.8437 0.8381
Bagging 0.9962 0.9979 0.9970 0.8873 0.8528 0.8697
Adaboost 0.9907 0.9953 0.9930 0.8381 0.8464 0.8422
GBDT 0.9958 0.9991 0.9975 0.9201 0.8599 0.8890

Stacking 0.9958 0.9983 0.9970 0.9136 0.8486 0.8799
Omni 0.9571 0.9969 0.9766 0.9639 0.7569 0.8479

NashRL 0.9745 0.9899 0.9901 0.9136 0.8486 0.8799
BayesAE 0.9943 0.9979 0.9912 0.8973 0.8638 0.8871
NashAE 0.9907 0.9953 0.9930 0.8873 0.8528 0.8697

detector to the input traffic of the other 10 detectors. Based on this, we can
obtain a cross-technology transferability matrix. As shown in Fig. 2, the number
on each cell of the matrix represents the ASR based on the transfer between the
row and column corresponding detectors. More intuitively, the redder the cell
color, the higher the ASR of the corresponding transfer attack. Similarly, the
bluer the color, the lower the ASR.

LR SVM DT MLP Bag Ada GBDT StackBayesAE

LR

SVM

DT

MLP

Bag

Ada

GBDT

Stack

BayesAE

76.00 78.00 82.00 74.00 74.00 84.00 84.00 96.00 82.00

12.00 40.00 34.00 22.00 32.00 36.00 34.00 40.00 32.00

4.00 12.00 62.00 6.00 46.00 70.00 70.00 80.00 60.00

96.00 96.00 96.00 96.00 14.00 96.00 80.00 80.00 68.00

2.00 6.00 50.00 6.00 50.00 64.00 46.00 68.00 46.00

2.00 8.00 48.00 10.00 48.00 96.00 66.00 76.00 46.00

2.00 6.00 52.00 12.00 34.00 72.00 62.00 70.00 50.00

6.00 14.00 62.00 12.00 46.00 84.00 66.00 88.00 58.00

4.00 14.00 60.00 12.00 46.00 76.00 70.00 80.00 58.00

(a) CTU13 dataset

LR SVM DT MLP Bag Ada GBDT StackBayesAE

100.00 96.00 72.00 100.00 76.00 50.00 56.00 70.00 98.00

80.00 94.00 46.00 94.00 68.00 50.00 38.00 88.00 86.00

34.00 62.00 52.00 48.00 72.00 46.00 18.00 52.00 54.00

88.00 96.00 56.00 100.00 62.00 50.00 42.00 60.00 84.00

36.00 56.00 36.00 52.00 78.00 32.00 50.00 66.00 46.00

28.00 50.00 60.00 48.00 60.00 100.00 22.00 54.00 56.00

44.00 66.00 60.00 58.00 78.00 70.00 64.00 52.00 64.00

50.00 90.00 56.00 64.00 64.00 44.00 36.00 100.00 66.00

62.00 82.00 58.00 90.00 68.00 48.00 30.00 66.00 82.00
0

20

40
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80

100

(b) Datacon-EMT dataset

Fig. 2: Transfer-based attack success rates on two datasets.

Specifically, we can find that dark red cells are usually transferred between
the same or similar detector models. That is, the more similar the models are,
the better the transfer will be. But there is a special case that the adversarial
traffic generated for DT are almost useless for LR, which only achieve a 4%
attack success rate on the CTU13 dataset. In addition, almost all ensemble
models (Bagging, Adaboost, GBDT, Stack) have been attacked successfully with
ASR up to 90%. Even though our BayesAE is relatively robust compared with
other ensemble methods, it is still vulnerable to specific adversarial attacks.
This means that a simple fixed ensemble strategy cannot achieve satisfactory
robustness against even black-box adversarial attacks.
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Fig. 3: Detection rate of 8 ensemble detectors under two threat models.

6.3 Robustness Evaluation against M-TBA and AM-TBA

To further evaluate the robustness of ensemble detectors under realistic attack
assumptions, we conduct adversarial attacks to five basic ensembles and three ad-
vanced ensembles under M-TBA and stronger AM-TBA attacks, respectively. As
shown in Fig. 3, compared with the basic detectors, all of the three advanced en-
semble detectors (Omni, NashRL and NashAE ) exhibit strong robustness against
an M-TBA attack. For example, on the CTU13 dataset, their detection rate is
over 80%, while almost all of other ensemble detectors can only achieve a de-
tection rate below 50%. Under AM-TBA, however, the robustness of Omni is
greatly diminished, reaching a DR of only 22% on the CTU13 dataset, while
NashRL and NashAE are significantly better and still achieve around 80% DR.
Datacon-EMT performs similarly to CTU-13, and our NashAE can still attain
a detection rate of over 75% despite adaptive attacks.

6.4 Convergence Performance Evaluation

As shown in Fig. 4, we further study the convergence performance of NashRL
and NashAE. Although their iteration times of converge almost identical on both
CTU13 and Datacon-EMT datasets, the detection rate of NashAE is steadily
better than that of NashRL. Specifically, DR of NashRL is only 2.5% worse
than NashAE on the CTU13 dataset. However, on the Datacon-EMT dataset,
NashRL becomes extremely vulnerable to adversarial attacks after attack power
has been doubled. The DR metric of NashRL is even less than 60%. In contrast,
our NashAE can still achieve a maximum of 75% DR. This means that our
method can converge to a stable equilibrium solution, and outperform NashRL
by over 15% regardless of the attack strength.
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Fig. 4: Iterations numbers of NashAE and NashRL on two datasets.

7 Conclusion

In this paper, we propose NashAE as an ensemble malware detector with dy-
namic ensemble strategies. As the first step towards training robust malware
detectors by adversarial ensemble framework, NashAE provides security oper-
ation and maintenance personnel with a solution that can deal with powerful
adversaries. Our work can be further improved, i.e., NashAE uses restricted
feature-space attacks to mimic traffic-space attacks, while the traffic should be
directly modified in a more realistic traffic-space adversarial attack. To solve this
problem, the inverse feature-mapping [11] is a critical technique. However, con-
verting a feature vector into a traffic-space object is difficult due to the feature
mapping function is neither invertible nor differentiable. In the future, we will
continue to explore solutions to this challenge for a more robust detector.
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