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Abstract. The objective of the paper is to describe computational meth-
ods of control synthesis for a certain class of nonlinear driftless control
systems. Such systems are previously found to be simplifications (called
homogeneous approximations) of more complicated nonlinear systems
that still preserve most crucial properties of the original ones like con-
trollability. The class of systems in question have a special feed-forward
form that is sufficiently easy to integrate and allows to solve concrete
problems in control theory. Here we continue our research with describ-
ing the computational procedure for control synthesis as the extension
of existing software libraries in Python language. We show that our ap-
proach leads to faster computation times compared to standard methods.
The results are illustrated with some numerical experiments and simu-
lations.

Keywords: control synthesis · nonlinear system · nonlinear approxima-
tion · homogeneous approximation · computational procedures.

1 Introduction

In this paper we continue our investigation from [11], namely we consider control
systems – nonlinear with respect to state and linear with respect to controls –
namely (driftless) systems of the form

ẋ =

m∑
i=0

Xi(x)ui, (1)

where Xi(x) are real analytic vector fields in the neighborhood of the origin in
RN+1. It is one of class of systems widely considered in modern control theory.

Control theory is an interdisciplinary science that combines analysis and
mathematical modeling of systems treated as dynamical systems with control.
Most often, a dynamical system is described using different types of differential
equations, e.g. linear/nonlinear or ordinary/partial. One of the most important
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property of control theory is controllability, which describes possibility of finding
the external input that carries out the system in a finite period of time to a given
state under the fulfillment of initial conditions.

The intensive development of modern control theory led to the introduction
of new methods that allowed to analyze the properties of systems described by
nonlinear differential equations. The classical approaches based on linearization
and the other one on concepts of differential geometry (Lie brackets theory)
(cf. [18] on both approaches). Linearization, i.e. replacing a nonlinear system
with a linear one, although being useful in many cases, may result in the loss
of structural properties of the original system and therefore cannot be freely
applied. It means that in order to approximate complex nonlinear systems we
should use simpler nonlinear systems. One of possible ways of choosing those
simpler systems is a homogeneous approximation method and was extensively
developed over the last four decades [1,2,4,6,9,14,15]. This lead to the systems
that have a special, feed-forward form, that allows to consider new approaches to
their further analysis. In this paper we will present some new numerical methods
of control synthesis for such systems. It is worth to notice that all homogeneous
systems can be described in the feed-forward form, but not the other way around.
Thus the methods presented below can be applied in general for a larger class
of systems, that is all feed-forward systems.

2 Numerical control synthesis in details

Control system. Here we pick up the investigations from [11] and consider
homogeneous approximation of system (1) with two controls, u0 and u1, and we
assume that it is already given in the feed-forward form,

ẋ0

ẋ1

ẋ2

...
ẋN

 =


f0

f1(x0)
f1(x0, x1)

...
fN (x0, . . . , xN−1)

u0 +


g0

g1(x0)
g1(x0, x1)

...
gN (x0, . . . , xN−1)

u1 (2)

that is fk and gk depend only on x0, . . . , xk−1 for all k = 1, . . . , N , and f0,
g0 are constants. For such a system, with given controls uj (j = 0, 1) we can
describe its behavior using only a successive integration of consecutive differential
equations. Direct feed-forward integration can be troublesome because of nested
integrations and some kind of interpolation of intermediate results would be
helpful. Thus, a proper numerical representation for control signal and state
variables is an important issue in numerical practice.

Numerical representation. For this tasks we can use representations based
on Chebyshev polynomials. Chebyshev interpolation poses a very robust and
convenient framework for a different types of computations with continuous func-
tions [3,7,10,12]. We can use this framework for solving differential equations in
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a feed-forward form both for the integration and for storing intermediate results.
If the functions fk & gk and controls uj are polynomials, then using Chebyshev
interpolation we can obtain fully numerically accurate solutions. To implement
such solutions we only need operations of integration, multiplication and addi-
tion of Chebyshev interpolators (or equivalently Chebyshev polynomials).

We assume that the control signal is a polynomial of degree n written in the
Chebyshev basis of the first kind Tj (j = 0, . . . , n), that is

fn(t) =
1

2
a0 +

n∑
j=1

ajTj(t).

We will not use this form directly, but the barycentric interpolation on the
Chebyshev points of the second kind (or the Chebyshev extreme points) in-
stead [3].

The difference between Chebyshev interpolator and Chebyshev polynomial
approximation is that in the first case we represent functions by the sequence of
function values in Chebyshev nodes and in the second case we represent func-
tions via sequence of coefficients in Chebyshev polynomials base. Both cases are
equivalent and one can easily change the representation from one form to an-
other, if needed. For example, for evaluating functions represented in Chebyshev
nodes we have a nice barycentric interpolation procedure [3], the analogue for a
polynomial representation is Clenshaw algorithm [5].

Both representations are widely used in practice, e.g. packages Chebfun [7]
and PaCal [10] are based on barycentric interpolation, while package polyno-
mial.chebyshev from numpy provides common operations on Chebyshev polyno-
mial expansion. The transformation between both representations (called Cheby-
shev transformation), i.e. transition from the interpolation using Chebyshev
nodes to coefficients of expansion in the Chebyshev basis, can be effectively
performed using Fast Fourier Transform [12, ch. 4].

Representation using interpolation is very convenient for most algebraic oper-
ations on such interpolators and function evaluation via barycentric procedure.
However, the cumulative integration is more effective when performed using
Chebyshev expansion [12, ch. 2], as we have a direct formula

∫ t

0

fn(τ)dτ =
1

2
c0 +

n+1∑
j=1

cjTj(t),

where constant c0 is determined from the initial condition, and

cj =
aj−1 − aj+1

2j
, for j ≥ 1,

with an+1 = an+2 = 0.
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Representation by Chebyshev interpolation. The interpolator Y is repre-
sented by values of functions yj in Chebyshev nodes tj :

Y =

(
t0, t1, . . . , tn
y0, y1, . . . , yn

)
.

All operations used in system trajectory determining procedure are closed with
respect to Chebyshev representation. For example, the sum of interpolators with
the same set of Chebyshev nodes is given by

Y + Z =

(
t0, t1, . . . , tn

y0 + z0, y1 + z1, . . . , yn + zn

)
,

and multiplication is given by

Y Z =

(
t0, t1, . . . , tn+m

Y (t0)Z(t0), Y (t1)Z(t1), . . . , Y (tn+m)Z(tn+m)

)
,

where

Y (t) =

n∑
j=0

wj

t− tj
yj

n∑
j=0

wj

t− tj

,

tj = cos
jπ

n
are Chebyshev nodes of the second kind, yi are interpolated function

values, and wi are proper (barycentric) weights (cf. [3]) defined as the sequence

w =

(
1

2
,−1, 1,−1, . . . , (−1)n−2, (−1)n−1,

(−1)n

2

)
.

Recalling that the class of analyzed systems has a special feed-forward form,
we can easily approach it directly using a presented Chebyshev framework. Com-
putations with this representation are fast and numerically very stable, accuracy
is typically close to the machine precision. When we restrict control signals ui

and functions fk & gk to polynomials then the proposed procedure will be ana-
lytically exact.

Representation by piecewise functions. Chebyshev expansion is valid only
for regular continuous functions on closed interval (see e.g. [12]), but we can
extend such framework to continuous piecewise functions, where each segment is
represented by a Chebyshev interpolator. This is a natural extension and to per-
form algebraic operations we should find a common nested set of intervals. This
representation is a bit more complicated as we have to aggregate computations
from each sub-interval.
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Fig. 1. Illustration of the proposed integration procedure using Chebyshev interpo-
lation (left side) and piecewise Chebyshev interpolation (right side) for the system
ẋ1 = u(t), ẋ2 = x1. Interpolation nodes are presented as dots, sℓ denote switching
points for the case of the bang-bang control.

Note that piecewise constant functions play an important role in the control
theory, and they are the main tool in the optimal control synthesis investiga-
tions [18]. In the case of bang-bang controls (piecewise constant functions) the
resulting trajectories will consist also of piecewise, but not constant functions
in general. Figure 1 presents comparison of two considered representations and
results of simple preliminary computations. Notice that each integration step in-
creases degrees of polynomials and, in consequence, adds some additional nodes
to the interpolators.

Numerical synthesis of the controls. The control synthesis task is to find
such control signals ui, that would take the system for a given initial point X(0)
to the origin O. Both considered types of representations provide two different
ways to produce control signals using polynomial control and bang-bang control.
We consider two optimization procedures for bang-bang control.

Details of all three considered approaches are as follows.

1. Chebyshev or polynomial control: In this case we represent control sig-
nals via Chebyshev barycentric interpolation, and system coordinates are
represented also by Chebyshev barycentric interpolation on interval [0, Tf ],
where time of system evolution, Tf , is given up front. To find the controls
we use the optimization procedure with goal function QP of the form

QP (U0, U1) = ∥xf∥22 + α

n∑
k=0

∥xk∥22
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where

U0 =

(
t1, t2, . . . , tn
u01, u02, . . . , u0n

)
, U1 =

(
t1, t2, . . . , tn
u11, u12, . . . , u1n

)
,

uij are values of control signals ui (i = 0, 1) in Chebyshev nodes tj (j =
0, 1, . . . , n) scaled to the interval [0, Tf ], α > 0 is a (small) regularization
parameter, ∥xf∥22 =

∑n
k=0 |xk(Tf )|2, ∥xk∥22 =

∫ Tf

0
|xk(t)|2dt. As final time

Tf is fixed, Chebyshev nodes tj are also fixed, and the cost function depends
on interpolated nodes values uij only. As the optimization procedure we
use here the l-bfgs-b procedure from scipy [13], with additional bounds on
maximal values of nodes of the control signals.

2. Bang-bang control 0: Here we represent the control signals using piecewise
constant functions on interval [0, Tf ] (with fixed Tf ) and switching points
0 ≤ s1 < . . . < sp ≤ Tf , while system coordinates are represented by
piecewise Chebyshev interpolation. In this case the cost function Q0 is similar
to the previous case, namely

Q0(U0, U1) = ∥xf∥22 + α

n∑
k=0

∥xk∥22

where

Ui(t) =


1, for t ∈ [s4ℓ, s4ℓ+1)

0, for t ∈ [s4ℓ+1, s4ℓ+2)

−1, for t ∈ [s4ℓ+2, s4ℓ+3)

0, for t ∈ [s4ℓ+3, s4ℓ+4),

s0 = 0, sp+1 = Tf , with constrains

s1 ≥ 0,

sℓ ≤ sℓ+1 (ℓ = 0, 1, . . . , p− 1),

sp ≤ sp+1 = Tf ,

but in this case the cost function depends on switching points sj only (see
Fig. 1). Both control functions Ui are optimized using independent sequences
of switching points. As we have linear constraints here this time the opti-
mization procedure we use is trust region method, namely scipy’s trust-constr
procedure.

3. Bang-bang control 1: After careful investigation of the above optimization
problem we observed that we can simplify the procedure by using interval
lengths instead of switching points as variables in the procedure. In this
case we are able to drop fully linear constraints and use the bound-type
constraints. Here again we represent the control signals using piecewise con-
stant functions, but on unknown at first interval [0, Tf ], and by widths of
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interpolation intervals ∆sℓ := sℓ − sℓ−1 ≥ 0, ℓ = 1, 2 . . . , p+ 1 (instead
switching points), and system coordinates are again represented by piece-
wise Chebyshev interpolation. As the optimization procedure we use the
same procedures – the l-bfgs-b procedure from scipy [13] – with bounds on
maximal values of nodes of the control signals, but this time we are able to
optimize the time Tf of control of the system, if possible, by including an
additional term to the cost function. Thus, the new cost function Q1 takes
the form

Q1(U0, U1) = ∥xf∥22 + α

n∑
k=0

∥xk∥22 + β

p∑
ℓ=1

∆sℓ,

where α > 0 and β > 0 are (small) regularization parameters,

Ui(t) =


1, for t ∈ [s4ℓ, s4ℓ+1)

0, for t ∈ [s4ℓ+1, s4ℓ+2)

−1, for t ∈ [s4ℓ+2, s4ℓ+3)

0, for t ∈ [s4ℓ+3, s4ℓ+4),

and sℓ =
∑ℓ

i=1 ∆si, with constrains

∆sℓ ≥ 0 (ℓ = 1, 2 . . . , p+ 1).

As the reference procedure for all three cases we will use a general purpose
ode solver odeint function from scipy. Experimental part was prepared using
Python computational environment with numpy [8] libraries mainly for arrays,
scipy [17] for optimization and ODE solvers.

3 Numerical experiments

Systems. In the experimental part we consider three control systems: one based
on real-life model, sys0, of the form


ẋ0

ẋ1

ẋ2

ẋ3

ẋ4

 =


1
0
0
0
0

u0 +


0
1
x0

−x2
0

2
x3
0

6

u1, (3)
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which is the homogeneous approximation of the truck with trailers system (see
[11]), and two artificially generated ones, namely sys1, that is

ẋ0

ẋ1

ẋ2

ẋ3

ẋ4

 =


1
0
x1

0
x1x2

6

u0 +


0
x0

0

−x2
2

4
0

u1, (4)

and sys2, given by 
ẋ0

ẋ1

ẋ2

ẋ3

ẋ4

 =


1
0
0
0
0

u1 +


0
1

−x0x1

−x0x
2
1

2

−x0x
3
1

6

u2. (5)

Results. We use two quality measures in all cases, that is ℓ2-norm of differences
between the obtained final position and the goal (here the origin O),

∥xf∥2 =

√√√√ 4∑
k=0

|xk(Tf )|2, (6)

and ℓ1-norm of those differences,

∥xf∥1 =

4∑
k=0

|xk(Tf )|, (7)

but in the case of piece-wise algorithm 1 (bang-bang control 1) we also compare
the time of systems’ evolution, Tf , against other algorithms, where we used the
same fixed value of Tf = 8. In all cases we check computation times, namely
we find time of establishing the control signals (tcont) and time of constructing
the trajectories using our feed-forward methods (tf−f ) and compare it to the
reference time (tref ) of trajectory constructions with the general purpose ode
solver odeint function from scipy. Detailed results are summarized in Table 1,
figures 2, 3 and 4 present sample trajectories for different initial positions.

Concerning computational time, one can observe that piece-wise algorithm 1
(bang-bang 1 controls) was able to cut the systems’ evolution time, in two cases
halving it, which is very promising for the applications for controllability related
problems for original, more complicated nonlinear systems (cf. [11, 16]). In two
cases (’sys0’ and ’sys1’ ) control synthesis computation times of all algorithms
were comparable, but for system ’sys2’ Chebyshev algorithm was significantly
faster. Direct comparison of our methods (Chebyshev and piecewise functions)
is not simple as the number of nodes influences very differently the computa-
tional complexity in both methods. For example, for five switching points we
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Table 1. Comparison of results of control synthesis experiments, where |x0|2 denotes
ℓ2 norm of initial state of the system,|xf |2 – ℓ2 norm of final state of the system,
|xf |1 – ℓ1 norm of final state of the system, Tf – total time of system evolution,
tcont – computation time of control synthesis, tf−f – computation time of finding the
trajectory using our feed-forward approach, tref – computation time of finding the
trajectory using reference procedures, ie. function odeint from scipy.

|x0|2 |xf |2 |xf |1 Tf tcont tf−f tref
system method nodes

sys0 cheb 5 1.11 0.00155 0.00220 8 1.46 0.00320 0.304
10 1.11 0.00214 0.00155 8 6.51 0.00385 0.357
20 1.11 0.00354 0.00217 8 13.2 0.00395 0.329
50 1.11 0.00814 0.00399 8 41.6 0.00383 0.338

piece0 5 1.11 0.01030 0.00769 8 23.8 0.0229 0.468
7 1.11 0.01020 0.00595 8 39.2 0.0280 0.393
9 1.11 0.00884 0.00379 8 59.1 0.0318 0.423

piece1 5 1.11 0.00740 0.00594 4.14 14.2 0.0157 0.170
7 1.11 0.00610 0.00384 3.77 39.4 0.0206 0.146
9 1.11 0.00759 0.00330 3.61 50.1 0.0234 0.162

sys1 cheb 5 1.11 0.00364 0.01630 8 1.92 0.00350 0.318
10 1.11 0.00368 0.01380 8 5.93 0.00402 0.343
20 1.11 0.00266 0.00595 8 18.6 0.00400 0.284
50 1.11 0.0103 0.01020 8 45.8 0.00409 0.273

piece0 5 1.11 0.0314 0.01710 8 29.2 0.0282 0.467
7 1.11 0.0244 0.01060 8 48.1 0.0330 0.436
9 1.11 0.0131 0.01160 8 74.5 0.0405 0.413

piece1 5 1.11 0.0135 0.00827 5 30.3 0.0256 0.276
7 1.11 0.00738 0.00274 3.99 41.6 0.0270 0.174
9 1.11 0.00724 0.00335 4.56 63.0 0.0308 0.198

sys2 cheb 5 2.19 0.0542 0.0191 8 2.25 0.00411 0.342
10 2.19 0.0529 0.0232 8 5.83 0.00479 0.284
20 2.19 0.0534 0.0188 8 15.4 0.00551 0.300
50 2.19 0.0579 0.0217 8 68.8 0.00642 0.373

piece0 5 2.19 0.0600 0.0318 8 33.4 0.0339 0.308
7 2.19 0.0536 0.0286 8 72.0 0.0526 0.427
9 2.19 0.0532 0.0243 8 135 0.0713 0.573

piece1 5 2.19 0.0460 0.0222 6.60 31.9 0.0317 0.263
7 2.19 0.0294 0.0210 7.91 105 0.0472 0.357
9 2.19 0.0269 0.0111 7.36 168 0.0672 0.545

obtain five interpolators and 15 interpolating nodes (three per each point), and
calculating values of the function requires more numerical steps than calculat-
ing the analogous value for Chebyshev polynomial of 15 degree. Experiments
show significant time advantage over piecewise algorithms for the same number
nodes used, especially for trajectory computation times. Time needed for syn-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97632-2_1

https://dx.doi.org/10.1007/978-3-031-97632-2_1
https://dx.doi.org/10.1007/978-3-031-97632-2_1


10 M. Korzeń et al.

a)

1.0
0.5

0.0
0.5

1.0x0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

x 1

0.6
0.4

0.2

0.0

0.2

0.4

x 2

trajectory
initial
final
goal

Chebyshev interpolation, nodes=10

b)

0.5
0.0

0.5
1.0x0 1.0

0.5
0.0

0.5
1.0

x 1

0.4

0.2

0.0

0.2

0.4

x 2

trajectory
initial
final
goal

Bang-bang control1, nodes=9

c)

0 1 2 3 4 5 6 7 8

0

1

x 0
, u

0 scipy odeint
our solution
control

0 1 2 3 4 5 6 7 8

0.25
0.00
0.25

x 1
, u

1

0 1 2 3 4 5 6 7 8
0.00

0.05x 2

0 1 2 3 4 5 6 7 8
0.005

0.000

0.005

x 3

0 1 2 3 4 5 6 7 8
t [sec. ]

0.000

0.002

x 4

System state space

d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

1

x 0
, u

0 scipy odeint
our solution
control

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.5

0.0

0.5

x 1
, u

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.05

0.00

x 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [sec. ]

0.00

0.02

x 4

System state space

Fig. 2. Illustration of the proposed approach with the system ’sys0’ (3); a,b) projection
of system’s trajectories to 3D subspaces starting from different initial points. c,d) exem-
plary solution: control signals u0, u1 (solid black), black dashed lines represent solution
in our representation – system’s state space in separate coordinates xk, i = 0, 1, 2, 3, 4,
red solid lines – the same solution given by scipi.odeint.

thesis control does not show such large differences, most probably due to the
fact that the goal function QP has an easier form but has to be called more
times in the optimization process. Experiments show that those synthesis times
are comparable in the cases of 50 Chebyshev nodes and only 7 piecewise nodes
(switching points). In all 30 experiments computational times of generating sys-
tems’ trajectories were much faster using our new method than with the general
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Fig. 3. Illustration of the proposed approach with the system ’sys1’ (4); a,b) projection
of system’s trajectories to 3D subspaces starting from different initial points. c,d) exem-
plary solution: control signals u0, u1 (solid black), black dashed lines represent solution
in our representation – system’s state space in separate coordinates xk, i = 0, 1, 2, 3, 4,
red solid lines – the same solution given by scipi.odeint.

reference procedures (function odeint from scipy), being from ten times to even
one hundred times faster.

Concerning quality of the goal objectives – reaching the origin O – one can
observe that in all cases our trajectories tended in the direction of the goal. All
goal reaching measures give comparable results between Chebyshev and piece-
wise methods, but in general piece-wise algorithm 1 (bang-bang 1 controls) seems
to give slightly better results than piece-wise algorithm 0 (bang-bang 0 controls).
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Fig. 4. Illustration of the proposed approach with the system ’sys2’ (5); a,b) projection
of system’s trajectories to 3D subspaces starting from different initial points. c,d) exem-
plary solution: control signals u0, u1 (solid black), black dashed lines represent solution
in our representation – system’s state space in separate coordinates xk, i = 0, 1, 2, 3, 4,
red solid lines – the same solution given by scipi.odeint.

4 Summary

In this paper we presented the procedure of determining controls for homoge-
neous nonlinear systems from a computational point of view, and we provided
the numerical experiments with some selected nonlinear control systems in the
feed-forward form, that could arise from homogeneous approximations. After
comparing the system trajectories, we briefly discussed the quality of such con-
trols. The experiments confirmed that the theoretical results concerning homo-
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geneous approximations of nonlinear systems can be used in practice, and the
need to construct suitable software libraries to be used in possible applications
– e.g. in practical control design – is evident.

The approach presented in this paper can be further investigated, for example
trying to minimize not only time, but also energy norm of control signals.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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