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Abstract. The paper presents a posteriori error estimation strategy in the para-

metric integral equation system (PIES). It uses collocation point differences be-

tween solutions obtained numerically by PIES and another solutions interpolated 

based on the initial PIES analysis. Various techniques for interpolation are pro-

posed: by repeating the interpolation omitting one collocation point, by interpo-

lating using only values from adjacent collocation points and by the one degree 

higher polynomial obtained using the least squares approximation. This allows 

the calculation of local and global percentage error using the integral over the 

mentioned differences. Finally, it can be applied to ensure convergence of the 

solutions using the PIES method or to adaptive refinement of distribution or num-

ber of collocation points by identifying boundary regions where the error is rela-

tively high. 

Keywords: Error estimation, Parametric integral equation system (PIES), Col-

location points, Distribution refinement. 

1 Introduction 

Parametric integral equation system (PIES) is the method for solving boundary value 

problems, developed by the authors as an alternative to well-known numerical ap-

proaches like the finite element method (FEM) [1,2,3], the boundary element method 

(BEM) [4,5,6] or so-called meshless methods [7,8,9]. A distinctive aspect of PIES lies 

in its approach to the geometry representation. Instead of relying on meshing or dis-

cretization (into various kinds of elements), the method uses a limited set of points: 

corner points of the polygonal geometry or key boundary points reflecting the curvilin-

ear shape of the considered body. It is possible, because PIES is an analytical modifi-

cation of the boundary integral equation (BIE) [4,5,6], consisting of the analytical in-

corporation of the shape into the formalism of the equation. For this reason, the shape 

can be represented in various ways, but the authors chose very effective and flexible 

parametric curves (e.g. Bezier), which are well-known in computer graphics [10,11]. 

They allow for simple modeling using dedicated control points. The analytically incor-

porated shape, described using formulas representing curves, means that each shape 

modification is automatically reflected in the PIES formalism. 
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Moreover, the proposed approach enables a clear separation between shape model-

ing and solution approximation - two fundamental stages in solving boundary value 

problems. In FEM and BEM, they are often dependent on each other, which means 

more elements equal more accurate solutions. The PIES solution is approximated by a 

series with arbitrary basis functions (e.g. Lagrange polynomials in this paper) and 

forces the PIES equation to be satisfied at selected points (collocation points). Such an 

approach allows for the accuracy of the solutions to be influenced by changing only 

one parameter of the approximating series without the need to perform cumbersome re-

discretization, as is the case with the methods mentioned above. Meshless methods also 

do not rely on traditional elements like PIES. However, despite their variations - such 

as the boundary node method (BNM) [12], where input data includes only boundary 

nodes - they still require domain partitioning (division into cells) for integration. 

PIES has been successfully applied to solving various boundary value problems, 

starting with potential problems [13], through acoustic [14], elastic [15], and transient 

heat conduction [16] to elastoplastic [17]. The effectiveness of the described above way 

of shape modeling was then examined, and the accuracy of the obtained solutions was 

compared to the analytical results. The conclusions of this analysis were very satisfac-

tory. However, an analytical solution only sometimes exists, and there may also be 

situations where there is no even numerical solution to compare. Therefore, developing 

a dedicated error estimation strategy for PIES is essential. It refers to a set of techniques 

designed to evaluate the accuracy of numerical solutions to boundary value problems 

without comparing it to any other exact results. They are crucial to reliably assess so-

lution accuracy, guarantee convergence, and enable adaptive refinement, ensuring the 

method's robustness and practical applicability.   

The error estimation schemes may differ between methods for solving boundary 

value problems [18,19,20]. Focusing on BEM, as it is a predecessor of PIES, they can 

be classified into several types: the residual type, the interpolation type, the integral 

equation type, the node sensitivity type and the solution difference type [21]. Since 

PIES aims to improve efficiency (by e.g. simplifying modeling), from available ap-

proaches was selected the one which is computationally cheaper than the others – in-

terpolation error estimation. It has been widely used in other numerical methods 

[19,20], even though the accuracy of the predicted solutions is not guaranteed. This 

approach generally compares the original numerical solution obtained by the applied 

method with the interpolated solution (from now on referred to as the predicted solu-

tion). The interpolation is made based on the initial numerical solution mentioned 

above. The difference between predicted and numerical solutions is estimated as the 

error. 

This paper presents three approaches to interpolation of the predicted solution in 

PIES. The first consists of omitting one of the collocation points (the one where a new 

solution is calculated) and re-interpolating by the Lagrange polynomial based on the 

existing PIES solutions in the remaining collocation nodes. In the second variant, the 

Lagrange interpolation is performed only based on the values from the neighboring 

collocation nodes (one from the left and two from the right of the estimated collocation 

point). The last approach uses the least square approximation with a polynomial of ar-

bitrary degree based on the PIES values in the collocation points, skipping the currently 
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predicted one. A sequence of monomials is assumed as the basis function. The relative 

percentage errors, local and global, are calculated as integrals over the boundary from 

the obtained differences between the initial numerical solution and the predicted solu-

tion. Some examples have been used to demonstrate the behavior of the error estima-

tors. 

2 Parametric integral equation system (PIES) for 2D elasticity 

A parametric integral equation system (PIES) for 2D elastic problems without body 

forces can be presented in the following form [22] 

 0.5𝒖𝑙(�̅�) = ∑ ∫ {�̅�𝑙𝑗
∗ (�̅�, 𝑠)𝒑𝑗(𝑠)−�̅�𝑙𝑗

∗ (�̅�, 𝑠)𝒖𝑗(𝑠)}𝐽𝑗(𝑠)𝑑𝑠
𝑠𝑗

𝑠𝑗−1

𝑛
𝑗=1 , (1) 

where 𝑠𝑙−1 ≤ �̅� ≤ 𝑠𝑙 𝑠𝑗−1 ≤ 𝑠 ≤ 𝑠𝑗 , 𝑙 = 1,2,3, … , 𝑛𝐽𝑗(𝑠) is the Jacobian of transfor-

mation to a 1D parametric reference system in which the boundary in PIES is defined 

and 𝑛 is the number of boundary segments.  

The first integrand, �̅�𝑙𝑗
∗ (�̅�, 𝑠), is a modified fundamental solution and, as mentioned 

in the introduction, takes into account in its mathematical formalism the shape of the 

boundary defined in a general way. For the plane strain state, it can be represented by 

[22] 

 �̅�𝑙𝑗
∗ (�̅�, 𝑠) = −

1

8𝜋(1−𝑣)𝜇
 [

(3 − 4𝑣) ln(𝜂) −
𝜂1

2

𝜂2 −
𝜂1𝜂2

𝜂2

−
𝜂1𝜂2

𝜂2
(3 − 4𝑣) ln(𝜂) −

𝜂2
2

𝜂2

],  (2) 

where 𝜂 = [𝜂1
2 + 𝜂2

2]0.5, 𝜂1 = 𝛤𝑗
(1)

(𝑠) − 𝛤𝑙
(1)

(�̅�), 𝜂2 = 𝛤𝑗
(2)

(𝑠) − 𝛤𝑙
(2)

(�̅�), and 𝑣 is 

Poisson's ratio and 𝜇 is a shear modulus. The parametric function 𝜞(𝑠) can be repre-

sented by various curves known from computer graphics [10,11]. 

The following expression �̅�𝑙𝑗
∗ (�̅�, 𝑠) represents the second kernel [22] 

 �̅�𝑙𝑗
∗ (�̅�, 𝑠) = −

1

4𝜋(1−𝑣)𝜂
[
𝑃11 𝑃12

𝑃21 𝑃22
], 𝑙, 𝑗 = 1,2, … 𝑛, (3) 

where 

𝑃11 = {(1 − 2𝑣) + 2
𝜂1

2

𝜂2}
𝜕𝜂

𝜕𝑛
, 𝑃22 = {(1 − 2𝑣) + 2

𝜂2
2

𝜂2}
𝜕𝜂

𝜕𝑛
, 

𝑃21 = 𝑃12 = {2
𝜂1𝜂2

𝜂2

𝜕𝜂

𝜕𝑛
− (1 − 2𝑣) [

𝜂1

𝜂
𝑛2(𝑠) +

𝜂2

𝜂
𝑛1(𝑠)]}, 

𝜕𝜂

𝜕𝑛
=

𝜕𝜂1

𝜕𝜂
𝑛1(𝑠) +

𝜕𝜂2

𝜕𝜂
𝑛2(𝑠), 

and 𝑛1(𝑠) and 𝑛2(𝑠) are direction cosines of the external normal to 𝑗th segment of the 

boundary. 
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Functions 𝒖𝑗(𝑠) and 𝒑𝑗(𝑠) are parametric boundary functions. They are known or 

searched depending on individual segments' boundary conditions. They can be approx-

imated using series with arbitrary basis functions 

 𝒖𝑗(𝑠) = ∑ 𝒖𝑗
(𝑘)

𝐿𝑗
(𝑘)(𝑠),𝑀−1

𝑘=0      𝒑𝑗(𝑠) = ∑ 𝒑𝑗
(𝑘)

𝐿𝑗
(𝑘)(𝑠),𝑀−1

𝑘=0  𝑗 = 1, … , 𝑛, (4) 

where 𝒖𝑗
(𝑘)

, 𝒑𝑗
(𝑘)

 are unknown coefficients, 𝑀 is the number of coefficients on segment 

𝑗 and 𝐿𝑗
(𝑘)(𝑠) is the Lagrange polynomial on segment 𝑗. Various polynomials can be 

used as basis functions, like Chebyshev, Legendre, etc., but the Lagrange polynomials 

are applied in this paper.  

Equation (1) is then written for all collocation points and takes the form of the equa-

tion system with 2 × 𝑛 × 𝑀 equations. After solving it, the unknown coefficients from 

(4) are obtained. In the case of Lagrange polynomials, they are solutions at collocation 

points at the same time. 

The accuracy of PIES solutions depends on two main factors: the number 𝑀 in (4) 

and the arrangement of collocation points on each boundary segment. Various ap-

proaches have been tested over time, but two are mostly used: uniform distribution and 

at places corresponding to the roots of Chebyshev polynomials of the first kind (degree 

𝑀). Since the recursive formula by which the roots of the Chebyshev polynomial are 

generated is known [23], the arrangement of collocation points at the locations of these 

roots is automatic. The examination of the convergence technically comes down to the 

choice of just two parameters: the number 𝑀 and the way of arranging the collocation 

points. 

3 Boundary modeling by curves 

The main advantage of PIES is that the approximation of the solutions and the shape 

are separated. It comes from the fact that the boundary is modeled using parametric 

curves known from computer graphics [10,11]. Instead of classical discretization used 

in BEM or FEM, the whole segments are created by a single curve. Moreover, they are 

incorporated into the PIES formula analytically, so each change in the shape of the 

curve involves an automatic modification of the PIES formalism. The curves are easily 

modified by changing only their control points. This process is incomparably more ef-

fective than re-discretization in the so-called element methods. Fig. 1  presents how the 

boundary is modeled depending on whether the segment is straight or curved. 
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Fig. 1. Modeling of the boundary in PIES. 

As shown in Fig. 1, the boundary is modeled using curves. This paper uses Bezier 

curves of various degrees depending on the required shape. Thus, the polygonal shapes 

are modeled by curves of the first degree, defined by only two control points, while 

curved shapes by the curves of the third degree using four control points. Higher de-

grees are unnecessary because cubic curves can model all the necessary shapes and are 

not too computationally expensive.  

Modification of such defined geometry is also straightforward. It is enough to change 

the position of small number of control points to modify the shape significantly. An 

example is shown in Fig. 2, where three control points of the curved geometry change 

its shape. 

 

Fig. 2. Modification of the boundary in PIES. 

The above-described incorporation of curves into the PIES formalism allowed for sep-

arating the shape approximation from the solution approximation, which in PIES bases 

on changing the parameters of the approximating series (4). 

4 Error estimation 

The exact error of the boundary solutions is calculated as  

 𝒆𝑢 = 𝒖 − 𝒖𝑛,     𝒆𝑝 = 𝒑 − 𝒑𝑛, (5) 
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where 𝒖, 𝒑 are the exact solutions and 𝒖𝑛, 𝒑𝑛 are the numerical displacements and 

tractions obtained by PIES. It is known that analytical solutions only exist for some 

engineering problems. Therefore, its prediction should be used instead. For this reason, 

formula (5) takes the following form 

 �̌�𝑢 = �̌� − 𝒖𝑛,     �̌�𝑝 = �̌� − 𝒑𝑛, (6) 

where �̌�, �̌� are the predicted approximations of displacements and tractions. 

The predicted approximations �̌�, �̌� can be obtained by interpolating the PIES origi-

nal numerical solution using various-degree polynomials. The original PIES solution is 

just a solution of the system of equations at all collocation points. Therefore, the first 

approach (in the following chapters called approach 1) determines the new prediction 

at the particular collocation point by re-interpolating based on the original values, omit-

ting the considered node. As shown in Fig. 3, if the new value is predicted for node 2, 

the interpolation is performed using the remaining nodes (without 2). The same inter-

polation approach (Lagrange polynomials) is applied as in the PIES method. 

 

Fig. 3. The boundary segment with collocation nodes - diagram for approach 1. 

The second approach (approach 2) concerns interpolation using only the nearest neigh-

bors. To have the second-degree polynomial, three neighbors are considered - one to 

the left of the considered node and two to the right. For example, in Fig. 4, to predict 

the value of node 2, values from nodes 1,3,4 should be interpolated. There are some 

extreme cases: for the right-most node and the penultimate node, where an appropriate 

number of nodes from the left are taken into account to preserve the degree of the pol-

ynomial. The left-most node takes into account only nodes from its right. 

 

Fig. 4. The boundary segment with collocation nodes - diagram for approach 2. 

Both presented above ideas consider the interpolation of the numerical solution by a 

lower degree of interpolation function than in the initial PIES analysis. Therefore, the 

third approach (approach 3) is also proposed. It uses least squares approximation [23]. 

To obtain the interpolation polynomial 

 𝑄𝑚(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚, (7) 
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one must choose its degree (𝑚) and then find the coefficients (𝑎0, 𝑎1, … , 𝑎𝑚). They are 

chosen so that the value of the squared deviation between the polynomial values 

(𝑄𝑚(𝑥𝑖)) on the set of collocation points and the PIES initial results (𝑓(𝑥𝑖)) is as small 

as possible  

 𝑆 = ∑ [𝑄𝑚(𝑥𝑖) − 𝑓(𝑥𝑖)]𝑛
𝑖=1 . (8) 

By finding partial derivatives (8) concerning all coefficients of the polynomial (7) and 

equating them to zero, a system of m+1 equations is obtained, based on which the re-

quired coefficients of the polynomial (7) are determined. Then (7) can be used to predict 

new values at collocation points. This time, like in the first approach, values from all 

collocation nodes are used except the considered one (Fig. 3), and the polynomial de-

gree for predicting is one bigger than in the initial PIES analysis. 

Errors (6) are estimated collocation points errors. To calculate the error for the 

boundary segment 𝑖, the following equations can be used 

 ‖𝒆𝑢‖𝑖 = ∫ (�̌� − 𝒖𝑛)𝑑Γ
Γ𝑖

, ‖𝒆𝑝‖
𝑖

= ∫ (�̌� − 𝒑𝑛)𝑑Γ
Γ𝑖

.  (9) 

The global error for the whole boundary is expressed by 

 ‖𝒆𝑢‖ = ∫ (�̌� − 𝒖𝑛)𝑑Γ
Γ

, ‖𝒆𝑝‖ = ∫ (�̌� − 𝒑𝑛)𝑑Γ
Γ

.  (10) 

The global relative percentage error 𝜼 is then written as 

 𝜼𝒖 =
‖𝒆𝑢‖

‖𝒖𝒏‖
× 100%, 𝜼𝒑 =

‖𝒆𝑝‖

‖𝒑𝒏‖
× 100%. (11) 

5 Numerical examples 

5.1 Initial verification of proposed approaches for global error estimation in 

comparison to analytical solutions 

The first example concerns a cylinder subjected to an internal pressure 𝑝 = 22.5𝑀𝑃𝑎 

under plane strain conditions. Young's modulus 𝐸 = 21000𝑀𝑃𝑎 and Poisson’s ratio 

𝑣 = 0.3 are the elastic material properties. Fig. 5 presents the quarter of the cylinder 

because of the symmetry. 
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Fig. 5. The quarter of the cylinder under internal pressure. 

As can be seen, the geometry is modeled using four curves: two of the first degree and 

two of the third degree. Only eight nodes are defined (●).  

As mentioned earlier, the accuracy of solutions depends on the arrangement and the 

number of collocation points. The two most tested variants are: uniform and at places 

corresponding to the roots of Chebyshev polynomials. As the interpolation is performed 

on collocation nodes, the uniform variant is excluded from the tests, because at high 

degrees of the interpolation polynomial we can expect distortions known as Runge's 

phenomenon [24].  

Global relative percentage errors for the whole boundary (11) for solutions 𝑢1, 𝑝1 

are calculated. Fig. 6 presents values obtained for 4-20 collocation nodes at each bound-

ary segment, and three approaches are used to predict new values at existing nodes 

(section 4).  

 

Fig. 6. Global relative percentage error 𝜂𝑢1
. 
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Fig. 7. Global relative percentage error 𝜂𝑝1
. 

As shown in Fig. 6 and 7, global relative percentage errors calculated by approaches 

1,2 and 3 have similar trends for both 𝑢1 and 𝑝1. Starting from higher values, they 

stabilize when using 8-10 collocation points per segment (32-40 in total). With 20 (80 

in total) collocation points used, of the three considered estimation approaches, the sec-

ond method (interpolation using only nearest neighbors, always of degree 2) had the 

most significant error. The other two are characterized by the similar level of error. 

The analytical results [25] confirm the trend in Fig. 6 and 7. Displacements 𝑢1 were 

calculated at the lower linear boundary of the quarter. The average relative error de-

creased from 0.1035% (16 collocation nodes in total) to 0.0277% (80 collocation nodes 

in total), but as shown in Fig. 6 the almost final stable level is reached at 32 collocation 

points (0.0278%). 

5.2 Proposed approaches in applications for global and local error estimating 

In the second example, the elastic plate with the circular hole subjected to the tensile 

load 𝑝 at its ends is considered (Fig. 8). Plane stress conditions are assumed with the 

following material properties 𝐸 = 1 × 106𝑀𝑃𝑎 and 𝑣 = 0.3. Due to the symmetry, 

only the upper right square quadrant is analyzed. 

The boundary is modeled in PIES using five curves: four of the first and one of the 

third degrees. It requires posing seven nodes. 

Once again, the error estimation is performed using various numbers of collocation 

points and multiple approaches for solution interpolation.  
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Fig. 8. The quarter of the plate with the circular hole. 

 

Fig. 9. Global relative percentage error 𝜂𝑢1
. 

 

Fig. 10. Global relative percentage error 𝜂𝑝1
. 
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As shown in Fig. 9, error 𝜂𝑢1
 for all approaches has the same trend and similar values. 

Once again, stabilization is visible with about 50 colocation points, where all error val-

ues are under 1%. The most significant value of 𝜂𝑢1
 for 110 points is obtained by ap-

proach 2, which confirms the results from the previous example. 

Analyzing 𝜂𝑝1
 (Fig. 10) shows that all approaches start with a similar high error 

(~79%). With the highest number of collocation points, approaches 1 and 3 have their 

error reduced to 1-3%, while approach 2 remained at a high level of 19% error. It is still 

the approach with the most significant estimated error value. 

Finally, analytical results [25] are also analyzed. Solution 𝑝2 at the bottom linear 

boundary of the plate is calculated. The comparison of the exact with the numerical 

results obtained by PIES with 20 and 110 collocation nodes is presented in Fig. 11. As 

can be seen, there is a very significant improvement in the accuracy of the solutions 

with the increased number of collocation nodes. It should be emphasized that the nu-

merical solutions for 70 collocation points already have an error close to that achieved 

with 110 points. 

 

Fig. 11. Comparison of analytical and PIES results for various number of collocation nodes. 

Analyzing errors more locally, i.e., on individual segments, it can be seen that the most 

significant relative percentage error was obtained for 𝑝2 on the left vertical side and 𝑝1 

on the bottom side of the plate. It amounted to about 3% and 1% respectively. The 

highest error at the collocation point on the vertical segment is at the first point from 

the hole. The difference expressed by formula (6) is 0.012906. At the bottom side it is 

again the closest collocation node to the hole, with a difference equal to 0.0468041. 

The calculations described in this paragraph were performed using approach 3. Having 

the sides and points with the highest errors, it is possible to densify the collocation 

points to improve the accuracy of the obtained results.  
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5.3 Global and local error estimating on example with numerical solutions 

only 

The last example concerns the polygonal L-shaped plate under uniform tension and 

plane stress conditions. The boundary conditions and dimensions are presented in Fig. 

12. The assumed material properties are 𝐸 = 1 × 105 𝑁
𝑐𝑚2⁄  and 𝑣 = 0.3. 

 

Fig. 12. The L-shaped plate under the uniform tension. 

The considered polygonal boundary is modeled using six curves of the first degree by 

six corner points. 

Global relative percentage errors for 𝑢1 and 𝑝1 are calculated by taking various num-

bers of collocation nodes and applying multiple approaches proposed in the paper. The 

results are presented in Tables 1 and 2. 

Table 1. Global relative percentage error 𝜂𝑢1
. 

no of collocation 

points 

𝜂𝑢1
 

approach 1 approach 2 approach 3 

24 4.4496 4.4496 27.304 

36 0.8971 1.0572 3.9844 

48 0.2671 0.5383 0.3969 

60 0.1201 0.3124 0.6612 

72 0.0718 0.1955 0.1376 

84 0.0481 0.1301 0.1687 

96 0.0353 0.0902 0.0915 

108 0.0269 0.066 0.0433 

120 0.0211 0.0496 0.0469 

 

 

As can be seen from Tables 1 and 2, each approach generates a similar trend. For both 

𝜂𝑢1
 and 𝜂𝑝1

, it can be observed that since using 48 points, estimated errors are less than 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_22

https://dx.doi.org/10.1007/978-3-031-97629-2_22
https://dx.doi.org/10.1007/978-3-031-97629-2_22


 Simple error estimation for PIES in 2D elasticity problems 13 

1% for all proposed approaches Values obtained at the maximum number of collocation 

points are close to zero and similar in each tested approach.  

Table 2. Global relative percentage error 𝜂𝑝1
. 

no of collocation  

points 
𝜂𝑝1

 

approach 1 approach 2 approach 3 

24 2.5624 2.5624 38.2614 

36 0.7162 0.2973 7.9506 

48 0.0486 0.1059 0.1371 

60 0.0768 0.0546 0.1236 

72 0.0297 0.0313 0.0188 

84 0.0262 0.0201 0.0219 

96 0.0194 0.0139 0.0197 

108 0.0156 0.0101 0.0104 

120 0.0125 0.0074 0.0093 

 
These conclusions are confirmed by analyzing numerical solutions obtained for differ-

ent numbers of collocation points. Such a test was carried out due to the lack of analyt-

ical solutions for this example. Tractions 𝑝1 at the right boundary of the L-shaped plate 

are compared for 24, 48, 120, and 180 collocation points and presented in Table 3. 

Table 3. Values of 𝑝1 at the right edge of the plate. 

y 
no of collocation points 

24 48 120 180 

5 13.5781 13.1634 13.2307 13.2247 

10 58.4243 60.4602 60.4068 60.4028 

15 104.528 107.376 107.288 107.285 

20 151.543 153.99 153.977 153.976 

25 199.125 200.539 200.575 200.576 

30 246.927 247.102 247.118 247.119 

35 294.603 293.545 293.541 293.544 

40 341.809 339.659 339.719 339.726 

45 388.198 385.421 385.549 385.558 

 

As can be seen, solutions obtained for 48 collocation nodes are very similar to those for 

120 and, finally, 180 points. Therefore, if we assume that the solution for the most 

significant number of collocation points is exact, the obtained global relative percent-

age errors reflect the results shown in Table 3. 

The boundary relative percentage errors are calculated to use the proposed estima-

tion approach to solutions’ adaptive refinement. The approach 3  with 96 collocation 

points is used. The most significant errors were obtained for the sides at the concave 

corner and were 0.1783% (𝑢1) and 0.3086% (𝑢2) for the horizontal and vertical edges, 

respectively. This may mean that the density of collocation points on these sides im-

proves the final accuracy. Such a process can be done automatically. 
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6 Conclusions 

The paper presents the approach to error estimating in PIES for 2D elastic problems 

using various techniques for obtaining predicted solutions. The first performs interpo-

lation at all collocation nodes with received numerical solutions besides the one where 

the expected value is searched. The second one carries out interpolation more locally, 

based on three neighboring collocation nodes. The last one uses the approximation pol-

ynomial of a degree one greater than the number of collocation points (without the node 

at which the value is predicted) obtained by the least square approximation.  

The proposed approaches are applied to three elasticity examples. Both the global 

and local (boundary) relative percentage errors are calculated for different numbers of 

collocation points using three techniques to obtain predicted solutions. In general, all 

proposed approaches gave similar error trends. Approach 3 always starts with the most 

significant error value, while approach 2 usually ends with it. The errors decreased with 

the increasing number of collocation points, so in most cases they fell to 1-3% with a 

total number of points of 80-120, depending on the example. Moreover, the local anal-

ysis is also reliable because the analyzed approaches returned the most significant errors 

on those boundaries that are actually characterized by the most considerable variability 

of solutions and thus require an increase in the number and change in the arrangement 

of collocation points.  

The next step in research carried out by the authors should be the implementation of 

adaptive refinement of the number and distribution of collocation points based on the 

error estimation in PIES. Combined with optimization algorithms, it can be an excellent 

tool to improve the accuracy of the obtained PIES solutions. 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article. 
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