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Abstract. In meta-learning tasks with tabular data, the choice of meta-
features significantly impacts model performance and interpretability.
This study investigates the necessity and methods of meta-feature selec-
tion in the context of meta-learning, particularly for tabular datasets.
We address the fundamental question: Is it better to select a subset of
meta-features or use the entire feature set? We examine various selection
techniques, including filter, wrapper, and embedded methods, as well as
a novel causal-based approach utilizing counterfactual reasoning. Our
experiments demonstrate that feature selection generally enhances per-
formance, with causal-based methods, especially those leveraging coun-
terfactual generation, showing superior efficiency and generalizability.
Furthermore, we explore how these methods fare under shifts in data,
particularly when non-informative features are added. The results reveal
that the counterfactual method maintains high efficacy across different
meta-learners and exhibits a favorable balance between model perfor-
mance and interpretability. These findings underscore the importance of
meta-feature selection in improving the adaptability and transparency
of meta-learners for tabular data tasks.
Code and supplementary materials for this research are available on
GitHub: https://github.com/ITMO-NSS-team/MetaSelect.

Keywords: Meta-learning · Meta-features selection · Causal-based meth-
ods · Counterfactual reasoning · Tabular data.

1 Introduction

Motivation. In the world of machine learning (ML), there exist domains that
are characterised by a substantial and varied array of models, such as machine
learning on tabular data. This domain is replete with models of diverse classes,
giving rise to a plethora of research endeavours aimed at ascertaining the rela-
tive merits of these models. A notable example of this is the investigation into
whether deep models possess an advantage in the context of tabular data [5], [23],
[24]. Recent studies have indicated that a more effective strategy might be to
focus on optimizing the hyperparameters of a specific tabular model rather than
on selecting the most optimal model [16]. This is understandable given the com-
plexity and time-consuming nature of selecting the best model. However, there
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exist methods and approaches, such as meta-learning, that aim to simplify this
process. The fundamental components of meta-learning encompass the meta-
characteristics of the data and the meta-learner itself, whose function is to facil-
itate the adaptation of performance information from disparate models to novel
data without the necessity of directly training and evaluating those models [10].
The creation of an initial space of meta-characteristics (meta-features) is pivotal
to the success of the meta-learning task [20]. Nevertheless, there is a paucity
of research on the advisability of reducing the initial meta-characteristics space
[18],[9], despite the plethora of studies on meta-characteristics selection [8], [19]
[7].

Contribution. Whilst the reduction of the dimensionality of the meta-
features space through selection appears reasonable in terms of efficiency and
interpretability, a fundamental investigation of this problem was deemed nec-
essary in order to answer the main research question: when it comes to meta-
features, is it better to pick and choose, or is it always better to train on the
whole set of meta-features? In contrast to previous studies, our analysis encom-
passes not only the impact of selection on meta-learner performance, but also
the impact on interpretability. To this end, we have suggested metric for the
latter and have analysed a large number of meta-features selection approaches.
Our analysis enables us to draw conclusions about the effectiveness and general-
isability of these approaches to different meta-learners. In addition, an approach
for meta-features selection based on causal analysis and counterfactual reason-
ing is proposed. The experimental studies demonstrate the high efficiency and
generalisability of this approach.

2 Related works

2.1 Meta-learning for tabular models

Given that the focus of this paper is on tabular data, it would be prudent to
analyse studies that address the problem of selecting algorithms for such data.
In essence, meta-learning based on meta-characteristics bears resemblance to
a conventional machine learning task, with meta-features serving as predictors
and the outcomes of machine learning models (e.g., performance) designated as
the target variable. In [23], the authors conducted experiments on a benchmark
of 111 datasets using 20 machine learning models for tabular data classifica-
tion. The meta-model employed is a logistic classifier, the purpose of which is to
minimise the error of predicting the win of a particular model based on the char-
acteristics of the data. The authors [25] propose an alternative approach, which
involves the initial reduction of the dimensionality of the original meta-features
space. This is followed by the training of a meta-learner SVM in this space. In a
separate publication [22], the authors conducted an investigation into a variety
of models, encompassing both classical models (logistic regression, decision tree
models) and deep models (FT-transformer, MLP) as meta-learners. The authors
observe that while deep models demonstrate optimal efficiency, they exhibit a
concomitant loss in interpretability. Also the authors [29] propose an alternative
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predictive problem, namely the prediction of changes in the performance curve
based on initial points. The proposed meta-model involves the identification of
a mapping between meta-characteristics and initial values of dynamics, as well
as validation statistics.

It is evident that the domain of meta-learning for tabular data is undergoing
continuous development. Currently, a prevalent practice is the selection of either
classical or deep models for tabular data, as the efficacy of these methods remains
a subject of ongoing research. Meta-learning has emerged as a potential solution
to automate this decision-making process. It is also noteworthy that in the vast
majority of papers, authors select meta-features in one way or another, yet rarely
elucidate the rationale behind their selection and the underlying principles that
guided their decision-making. This underscores the necessity and pertinence of
undertaking a more comprehensive investigation into the matter of reducing the
set of meta-features as a part of meta-learning pipeline.

2.2 Meta-features selection methods

With regard to the selection of meta-features, it is first necessary to recognise
that the task of meta-features selection is a particular instance of the more gen-
eral task of feature selection in machine learning. Consequently, all the estab-
lished approaches to feature selection are applicable to the selection of meta-
features. The classification of feature selection methods can be divided into
three distinct groups: filter, embedded and wrapper. Each of these groups pos-
sesses its own advantages and disadvantages. Filter methods comprise a range of
approaches, including correlation-based selection, selection based on statistical
tests (e.g., the Chi-square test and the ANOVA F-test), and selection based on
information criteria (e.g., mutual information) [11]. These methods are simple
and computationally efficient, and can also be termed model-free. Wrapper meth-
ods address the feature selection problem through the lens of an optimisation
problem. The quality of the machine learning model for which the features are
selected is frequently employed as a metric to gauge the efficacy of the selection
process. The optimisation algorithms employed in this context often encompass
evolutionary algorithms [28], greedy algorithms [21], and more complex algo-
rithms such as recursive feature elimination [27] or forward-backward selection
with early dropping [4]. Wrapper methods have been shown to be efficient, but
they are sensitive to the dimensionality of the source space and therefore not
always computationally efficient. Finally, a group of embedded methods involves
the direct selection of features during the training of machine learning (ML)
models. The most popular approach here is lasso regression, and there are also
its modifications, for example, LassoNet [12] and Deep Lasso [6]. The primary
disadvantage of embedded methods is that they are model-free and thus contin-
gent on the properties of the model itself.

In this paper, we propose the identification of an additional group of methods,
which we designate as causal − based. These methods have application in both
the filter and wrapper groups; however, we consider them as a discrete group,
given that they are predicated on entirely distinct principles of causal machine
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learning.Current methods for the selection of features do not invariably elucidate
the features that engender a result in the data. In such instances, the principles
of causal machine learning can prove beneficial. The majority of causal-based
methods are predicated on the identification of the Markov Blanket (MB) of the
target variable, since it is the attributes included in the MB that contain the
main information about the target variable [31]. MB search-based approaches are
informative, but they are also sensitive to a large number of features. Another
group of methods is based on causal inference, for example, feature selection is
based on calculated Average Treatment Effect values [15] or on counterfactual
reasoning [30], [13]. To the best of our knowledge, causal approaches have not
yet been investigated by authors for the task of meta-features selection, so in
this study we are going to fill this gap by comparing them with other classical
approaches to meta-features selection.

3 Backgrounds

The goal of meta-feature selection is to identify an optimal subset of features
S ⊆ F from a candidate set F = {X1, X2, . . . , Xn} that maximizes the predictive
performance of a meta-learner M while minimizing subset size. This is formalized
as a regularized optimization problem:

S∗ = argmin
S⊆F

[
L
(
M(S)

)
+ λ|S|

]
, (1)

where L represents the meta-learner’s loss function and λ controls the trade-off
between model performance and meta-feature set cardinality. The mathematical
formulations of the methods to be investigated in this paper are described below.

3.1 Filter Methods

Filter methods rank features using statistical measures of relevance:

– Spearman’s Rank Correlation:

ρ(Xi, Y ) =

∣∣∣∣Cov(rank(Xi), rank(Y ))

σrank(Xi)σrank(Y )

∣∣∣∣ (2)

– Mutual Information (MI):

MI(Xi, Y ) =
∑
x∈Xi

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
(3)

– ANOVA F-Test (continuous vs categorical):

F (Xi, Y ) =
1

K−1

∑K
k=1 nk(X̄

(k)
i − X̄i)

2

1
N−K

∑K
k=1

∑nk

j=1(X
(k)
ij − X̄

(k)
i )2

(4)
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3.2 Embedded Methods

Feature selection is integrated into the learning algorithm:

– Lasso Regression (L1 Regularization):

β∗ = argmin
β

{
1

2N
∥Y −Xβ∥22 + λ∥β∥1

}
(5)

Non-zero coefficients (βj ̸= 0) indicate selected features.
– XGBoost Feature Importance:

Importance(Xj) =

T∑
t=1

∑
s∈Sj(t)

gain(s), (6)

where Sj(t) denotes splits on feature Xj in tree t. Non-zero Importance(Xj)
indicates sekected features.

3.3 Wrapper Methods

Recursive Feature Elimination (RFE). RFE iteratively removes the least
important features:

1. Initialize with full feature set S0 = F
2. For each iteration t:

– Train model Mt on current features St:

θt = argmin
θ

L(Mt(St; θ)) (7)

– Compute feature importances {w(t)
i }

– Remove lowest-ranked features:

St+1 = St \
{
Xj | w(t)

j = min
Xi∈St

w
(t)
i

}
(8)

3. Terminate when |St| = k (desired subset size). Here desired subset size is
equal to half of the original number of meta-features.

3.4 Causal-based meta-feature selection

Average treatment effect based selection. For robust estimation of hetero-
geneous treatment effects in meta-feature selection, we employ the CausalForest-
DML estimator [3], which combines double machine learning (DML) with causal
forests [2]. For a meta-feature Xj acting as treatment variable T , and outcome
Y representing algorithm performance, we model:

Y = θ(Xj)T + g(X−j) + ϵ, T = f(X−j) + η, (9)

where X−j = F \ {Xj} are confounders, g(·) and f(·) are nuisance functions,
ϵ ⊥ η ⊥ X.

The CausalForestDML estimator implements the following steps:
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1. Orthogonalization: Fit regularized models to estimate

Ỹ = Y − ĝ(X−j) (10)

T̃ = T − f̂(X−j) (11)

2. Causal Forest: Estimate conditional average treatment effect (CATE) via

θ̂(xj) = argmin
θ

N∑
i=1

αi(xj)(Ỹi − θT̃i)
2, (12)

where weights αi(xj) are determined by forest similarity kernel.

The feature importance for Xj is computed as:

ATE-Importance(Xj) = E
[
θ̂(Xj)

]
·
√

Var(θ̂(Xj)), (13)

prioritizing features with both large average effects and effect heterogeneity.

Counterfactual based selection. For causal interpretation through interven-
tion analysis, we propose a counterfactual feature selection mechanism. Exist-
ing counterfactual generation-based feature selection approaches typically utilise
these counterfactuals as supplementary data [13]. In contrast, the present study
proposes a direct utilisation of the counterfactual generation efficiency as a fea-
ture selection criterion. The rationale underlying this approach is that if this
generation is successful in a given feature space, it can be assumed that these
are the features that influence the target variable.

Given a classifier f and meta-feature sj ∈ S, we formulate counterfactual
generation as the optimization problem:

δ∗ = argmin
δ

Lpred
(
f(x+ δ), ytarget)︸ ︷︷ ︸

Prediction Loss

+λ
1

N

N∑
i=1

|xcf
i − xorig

i |
MAD︸ ︷︷ ︸

Robust Distance Loss

(14)

where δ is the perturbation, ytarget is the opposite to f(x) label, λ controls
minimal intervention strength, MAD = median(|xi − median(x)|) scales per-
turbations by feature robustness. It is asserted that a counterfactual generation
which compelled the classifier to reverse the label, whilst concomitantly effecting
only negligible alterations to the data, is to be regarded as effective. Then the
feature selection criterion evaluates:

Efficiency(sj) =
1

N

N∑
i=1

I [f(xi) ̸= f(xi + δ∗i )] (15)

A meta-feature sj is selected if Efficiency(sj) > ϵ, where ϵ is a tolerance
threshold. In this study, the linear classifier was utilised as the classification
model (f), while the cross-entropy function was employed to calculate the pre-
diction loss. Additionally, the Adam optimiser, with a learning rate set to 0.01,
was employed for optimisation purposes.
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4 Design of Experiments

4.1 Dataset and meta-features description

We use experiment results provided in paper [16]. Authors present metrics for
19 algorithms (including GBDTs, neural networks and baselines) on 176 classi-
fication datasets from OpenML [26]. The results table is organized as follows:
datasets are split into 10 folds, with each fold corresponding to a row contain-
ing metrics for every model with different hyperparameter sets. The evaluated
metrics include logarithmic loss, AUC, accuracy, F1 score, and runtime (in sec-
onds), calculated for three data splits: train, validation, and test. In our study,
we focus on the F1 score from the test splits as the target metric for the follow-
ing models: Logistic Regression, Random Forest, XGBoost, MLP, ResNet, and
FT-Transformer.

Experiment results also include meta-features dataset. For each dataset fold
meta-features are calculated with Python package PyMFE [1]. They include
general features (such as number of attributes, number of distinct classes, etc),
statistical features (such as skewness or kurtosis), information-theoretic features
(such as noisiness of attributes or joint entropy), landmarking features (such as
performance of the Naive Bayes classifier) and model-based features (such as
number of leaf nodes in the Decision Tree model). Some meta-features are rep-
resented as vectors (e.g., maximum value from each attribute). These are aggre-
gated using various functions, including average, maximum, minimum, standard
deviation, kurtosis, skewness, and interquantile range.

The meta-dataset used in our research consists of meta-features and target
metrics for each dataset. The data preprocessing steps include:

– Aggregating meta-features by folds using median values,
– Removing meta-features with more than half of the values undefined,
– Excluding meta-features with large absolute values,
– Eliminating constant meta-features,
– Filtering meta-features based on the aggregation function,
– Removing duplicate columns and rows,
– Excluding datasets with undefined target metrics,
– Scaling data using Yeo-Johnson transform,
– Filtering meta-features with large VIF [17].

The final meta-dataset consists of 134 datasets, 123 meta-features.

Meta-learning tasks and meta-learners. In the present study, the following
meta-learning task was considered: predicting the F1 score of a ML model. The
task was formulated as binary classification task. The F1 score was predicted as
follows: if the F1 score exceeded the median of the target scores then 1 was as-
signed; otherwise, 0 was assigned. The models employed as meta-learning models
were KNN Classifier (6 neighbors, uniform weight function, leaf size: 40), XG-
Boost Classifier (maximal depth: 7, learning rate: 0.1, 50 estimators, evaluation
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metric: accuracy) and MLP Classifier (hidden layer size: 25, logistic activation
function, L-BFGS solver, strength of the L2 regularization: 0.05, adaptive learn-
ing rate with initial value 0.05).

5 Results

The following research questions are formulated in this study:

– RQ1. Should we make a selection of meta-features, and how do the different
ways of selecting features compare?

– RQ2. How do methods behave under shifts in the data when non-informative
features are added?

– RQ3. How do the methods relate to each other in terms of the interpretability
of the selected features?

5.1 Study of the performance of feature selection methods

Initially, a baseline study was conducted in order to ascertain the performance of
the selection methods. These were then compared to their profit performance on
all meta-features. The results are presented in figure 1. The initial conclusion that
can be drawn is that feature selection almost invariably improves the quality of
the result, thereby demonstrating its necessity. With regard to the performance
of feature selection methods, causal-based approaches, and in particular the pro-
posed algorithm based on counterfactual reasoning, demonstrate favourable
results. Indeed, the algorithm is among the top three methods in more than
half of the results. In the context of a group of methods, filter-based and causal-
based methods demonstrate optimal performance, with wrapper approaches and
embedded methods exhibiting average performance.

A thorough analysis of the performance of the methods with respect to the
target type reveals that the method based on counterfactual generations ex-
hibited equivalent proficiency in predicting the productivity of classical models
and the performance of deep models. With regard to meta-learning models, the
counterfactual method demonstrated notable efficacy in the MLP and XGBoost
models.

A study was also conducted on the computational complexity of feature se-
lection methods. As illustrated in the figure 2, the outcomes of measuring the
execution time of selection methods in relation to the dimensionality of the ini-
tial feature space are presented. As would be anticipated, causal-based methods
demonstrate the greatest longevity and exhibit increased sensitivity to the aug-
mentation in the number of features.

5.2 Feature Selection Under Data Shifting Conditions

In order to undertake a comprehensive investigation into the performance of
feature selection methods, experiments were conducted with the objective of un-
derstanding how the methods respond to shifts in the data, namely the addition
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Fig. 1. Results comparing feature selection methods, here base is a run on all meta-
features. In each category, the top 3 methods are highlighted with a black box.
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Fig. 2. Results comparing the running time of feature selection methods as a function
of the initial number of features.

of uninformative features. In order to achieve this, the logic of the experiments
presented in the paper [6] was utilised. Three categories of uninformative features
were generated based on the said study:
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– Random features - generated from a random Gaussian distribution.
– Corrupted features - the original features are randomly selected and Gaus-

sian noise is added to them.
– Second-order features - initial features are randomly selected and new fea-

tures generated from them by means of squaring, addition, multiplication,
etc.

In the course of the experiment, 50% of uninformative features were ap-
pended to the dataset, with the objective of investigating the performance of
meta-features selection methods in terms of classification performance. The re-
sults of the experiments are presented in figure 3. In order to facilitate the
perception of results, the mean value was calculated for each target type. This
enabled the prediction of the performance of both the classical and deep models.
It is evident that the quality remains largely consistent with the calculated effi-
ciency outlined in the preceding section (section 5.1). The f-value statistical test
emerged as the most robust approach when confronted with variations in unin-
formed features. Nonetheless, the counterfactual generation method consistently
yielded commendable results, consistently ranking within the top three in over
half of the cases examined. The performance of the embedded methods (lasso
and xgb) was found to be suboptimal in the addition of uninformative features.

5.3 Feature Selection and Interpretability

In addition, an investigation was conducted into feature selection methods with
regard to the interpretability of the results obtained. It is intuitive to assume
that if features are selected, their influence can be more easily analysed at a
later stage. In order to evaluate the interpretability of the results obtained after
feature selection, a metric importance fraction score is introduced (Eq. 16).
The prevailing logic in this context posited that an elevated concentration of
importance among a reduced number of meta-features would result in enhanced
interpretability. Consequently, the significance of each feature (I) was calculated
using the SHAP method [14]. The ratio of the sum of the top five features
significances to the sum of the significances of all the selected features was then
determined. Consequently, if the significance of the features was "distributed"
over all the selected features, this indicated a low interpretability of the selected
features and resulted in low importance fraction scoring.

Importance fraction score =

∑k
i=1 I(si)∑n
i=1 I(si)

(16)

The results of the feature importance score comparison are displayed in the figure
4. It is evident that the lasso and xgboost methods are the most prominent.
However, this can be readily explained by the fact that these methods typically
select a minimal number of meta-features (no more than 10), resulting in a
high importance fraction score. It is noteworthy that the counterfactual and
correlation methods typically select a comparable number of features (figure 5),
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Fig. 3. Results comparing feature selection methods with different types of uninfor-
mative features, here base is a run on all meta-features. In each category, the top 3
methods are highlighted with a black box.

yet the importance fraction score of the counterfactual method is marginally
higher on average. This finding suggests that the counterfactual method does
indeed select causal features. The absence of feature selection naturally engenders
low interpretability values of the results, which once again confirms the need to
select meta-features.

6 Conclusion and Discussion

In this study, we examined the impact of meta-feature selection on the per-
formance and interpretability of meta-learning models for tabular data. Our
investigation addressed the fundamental question of whether it is more advan-
tageous to select a subset of meta-features rather than relying on the entire
feature set. Through extensive experimentation across various selection method-
ologies—including filter, wrapper, embedded, and our proposed causal-based
counterfactual approach—we demonstrated that judicious feature selection can
substantially enhance both predictive performance and the clarity of model in-
terpretations.
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Fig. 4. Results of comparison of importance fraction score for different feature selection
methods, here base is a run on all meta-features.

Our experimental results consistently indicated that meta-feature selection
improves model outcomes. Notably, the causal-based methods, particularly the
counterfactual generation approach, emerged as a robust solution, often rank-
ing among the top performers across multiple meta-learners. This method not
only maintained high efficiency under standard conditions but also exhibited
strong resilience when datasets were augmented with uninformative features.
Such robustness underscores its potential for real-world applications where data
distributions may shift or noise is prevalent.

From an interpretability standpoint, our findings reveal that selecting a
smaller, more informative set of meta-features allows for a concentrated dis-
tribution of feature importance. Methods such as Lasso and XGBoost tended
to select a minimal number of features, thereby yielding high importance frac-
tion scores. However, the counterfactual method, while selecting a comparable
number of features to correlation-based approaches, provided marginally higher
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Fig. 5. Dependence of average importance fraction score on the number of selected
meta-features, here the cross - feature selection method’s cluster centroid.

interpretability. This suggests that causal-based selection not only filters out
redundant information but also preserves the intrinsic causal relationships that
are critical for understanding model behavior.

While the advantages of meta-feature selection are evident, our study also
highlights several challenges. The performance of embedded methods was no-
tably affected by the introduction of non-informative features, indicating a po-
tential sensitivity to data quality. Additionally, the computational complexity of
some selection methods, particularly those based on causal inference and coun-
terfactual reasoning, warrants further investigation to ensure scalability and ef-
ficiency in larger datasets.

In conclusion, our work reinforces the importance of incorporating meta-
feature selection into meta-learning pipelines, particularly for tasks involving
tabular data. By carefully selecting meta-features, practitioners can achieve a
more efficient and interpretable modeling process without sacrificing predictive
accuracy. Future research may focus on refining causal-based selection tech-
niques, exploring their applicability across diverse data modalities, and devel-
oping more computationally efficient algorithms. Ultimately, these efforts will
contribute to the broader goal of automating and enhancing the decision-making
process in machine learning model selection.
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