
cuTeBool: Fast and Scalable Boolean matrix
factorization on GPUs using Tensor Cores

Andrea Beyer1[0009−0001−0683−8803], Valentin Henkys1[0009−0002−9379−7129],
Robin Kobus[0000−0003−2726−1908], Stefan Kramer1[0000−0003−0136−2540], and

Bertil Schmidt1[0000−0003−2597−8331]

Institute of Computer Science, Johannes Gutenberg University Mainz, Germany
{abeyer@students.uni-mainz.de, henkys@uni-mainz.de}

Abstract. Boolean matrix factorization aims to represent binary data
as a product of two factor matrices, in order to uncover the underlying
structure of the data and find a compressed representation. However,
finding the factors of a given ground truth is computationally hard and
calls for fast implementations that accomplish a good approximation in
reasonable time. We present cuTeBool, a novel parallel algorithm that
exploits Tensor Cores on CUDA-enabled GPUs for fast matrix opera-
tions based on a randomized approach. Our comprehensive performance
evaluation shows that it produces approximate factorization competitive
to other state-of-the-art tools within vastly reduced runtime for a variety
of input matrices. Moreover, our algorithm is the only available method
that scales well with the size of the ground truth and is able to factorize
matrices that are at least one order-of-magnitude larger than all com-
petitors. We further analyze algorithmic parameters allowing us to find
a trade-off between performance and reconstruction quality.

Keywords: GPUs · Matrix Factorization · Parallel Computing

1 Introduction

Matrix factorization is an important technique in the field of unsupervised data
mining and compression. It aims to find a decomposition of a ground truth
matrix C into a product of n matrices Ai

C =

n∏
i=1

Ai.

In most practical applications, n ∈ {2, 3}, like in Singular Value Decomposition
with n = 3 and Non-Negative Matrix Factorization with n = 2.

Associative data can be naturally expressed in terms of Boolean matrices
over Bm×n with entries in B = {0, 1} instead of real-valued matrices. Rows and
columns of such matrices are then interpreted as objects and attributes: an entry
Mij is set to 1, if object i has attribute j. Typical examples include whether a
user listened to a song, read a book, or knows another person in a social network.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

2 A. Beyer et al.

Boolean matrices spawned by real-world applications are often sparse, i.e., the
number of objects and attributes is large compared to the average number of
attributes that are assigned to a single object.

In this context, Boolean Matrix Factorization (BMF) is defined as: Find
A ∈ Bm×k and B ∈ Bk×n for a given ground truth C ∈ Bm×n such that

C = A ◦B.

Here, ◦ denotes matrix multiplication over the semi-ring ({0, 1},∨,∧). Since
finding an exact representation is NP-hard [10,12], we often aim to find an ap-
proximation with k ≪ m and k ≪ n. This results in a compressed representation
of the ground truth and can be used for noise reduction, among others.

A lot of work has gone into optimizing BMF for non-parallel processors
[2,9,19]. To improve associated runtimes some libraries started to use parallelism
on multi-core CPUs [6] and many-core Graphics Processing Units (GPUs) [5,4].
With the rise of Machine Learning (ML), another type of compute unit has now
emerged: the neural processing unit (NPU). It is optimized for Matrix Multiply-
Accumulate (MMA) operations, which are frequently used in ML tasks. Our work
focuses on NVIDIA’s implementation, called Tensor Cores (TCs), available on
most modern CUDA-enabled GPUs.

While typically designed for floating-point arithmetic, TCs now also feature
support for Boolean matrix operations, making them a suitable candidate plat-
form for BMF. In this work, we present cuTeBool – the first TC-enabled parallel
BMF algorithm achieving high efficiency on modern GPUs.

Our detailed contributions consist of:

1. A novel BMF implementation utilizing TCs on GPUs, providing average
speedups of 2×, 20×, 38×, 20× compared to other limited-rank competitors
cuBool, Panpal, Primp, MEBF, respectively, while maintaining better F1-
scores across all tested datasets.

2. Support for ground truth matrices that are at least one order-of-magnitude
bigger than all competitors.

3. Automatic hyperparameter tuning, providing a good trade-off between re-
construction quality and performance.

4. Open-source implementation at https://gitlab.rlp.net/pararch/cutebool.

The remainder of the paper is structured as follows. We provide necessary
background in Section 2, followed by Section 3 discussing related work. Algorith-
mic methods are introduced in Section 4. Parallelization details are described in
Section 5. Performance is evaluated in Section 6. Finally, Section 7 concludes.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://gitlab.rlp.net/pararch/cutebool
https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 3

2 Background

2.1 Boolean Matrix Factorization

Formally, BMF operates within the Boolean semi-ring ({0, 1},∨,∧). Boolean
Matrix Multiplication (BMM, denoted as ◦) is then defined as

Ci,j =

k∨
l=1

Ai,l ∧Bl,j . (1)

We denote the set of Boolean x × y matrices as Bx×y. BMF is defined as the
task of finding two factor matrices A ∈ Bm×k and B ∈ Bk×n for a given ground
truth C ∈ Bm×n, such that

C = (A ◦B) . (2)

We distinguish between the decomposition rank, which is the dimension k of
a given factorization, and the Boolean rank of the ground truth: the smallest k,
for which Eq. (2) can be satisfied.

Since finding exact solutions is NP-hard [10,12], low-rank approximations are
typically preferred as a means to cancel out noise and compress data. The under-
lying notion is that the relations present in the data are influenced by a relatively
small set of unknown factors. Hence, a factorization is commonly understood as
a pair of basis vectors and coefficients that produce a close approximation and
reveal structure of the underlying data.

In this work, we approach approximate BMF with a rank k ≤ 128. The goal
here is to find A, B with a given k that minimize the reconstruction error :

Erec = |C− (A ◦B)| = fp+ fn. (3)

fp and fn denote the number of false positives and false negatives, respectively.
In some cases, false negatives and false positives may vary in significance for the
reconstruction. This can be captured by the weighted reconstruction error :

Ew
rec = w · fn+ fp. (4)

For w > 1, this implies that false negatives are penalized harder than false
positives. We use recall (R), precision (P), and the F-measure (F1) as metrics
to assess the quality of approximations. They are expressed in terms of true/false
positives (tp, fp) and negatives (tn, fn) as follows.

R =
tp

tp+ fn
, P =

tp

tp+ fp
, F1 = 2

P ·R
P +R

=
2tp

2tp+ fp+ fn
(5)

2.2 CUDA and Tensor Cores

CUDA-enabled GPUs feature multiple Streaming Multiprocessors (SMs) that
can be programmed using a large number of threads. Threads are partitioned
into thread blocks and warps. Each warp consists of 32 threads, each thread block

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

4 A. Beyer et al.

in turn hosts up to 32 warps. Threads within the same thread block can access
a common, but limited shared memory with reduced latency compared to global
memory, which is accessible to all threads. Within a warp, threads benefit from
data exchange comparable to register-speed through warp shuffles. The CUDA
language extension for C++ distinguishes between host and device code. The host
(CPU) can launch kernels on the device (GPU).

Working at warp-level, TCs are optimized to perform fast matrix multiplica-
tion. This is achieved through the MMA operation W = X ·Y+Z. X and Y are
referred to as factors, Z and W as accumulators. Large matrices are partitioned
into so-called fragments of fixed size, that can be understood as submatrices.
Each warp can compute one fragment of the result by iterating over fragments
in the factors, using the accumulator for subresults. This allows for efficient
parallelization of arbitrary sized products.

Each thread only holds a subset of entries for each fragment, so that the
warp collectively holds all entries of the considered submatrix. The choice of
fragment dimensions and data type for the multiplication is restrained by the
special layout required by TCs [14].

Newer TCs also provide support for 1-bit data types with a m8n8k128 frag-
ment type. That is, factor fragments of dimensions 128 × 8 and 8 × 128, and
accumulator fragments of size 8 × 8 are supported. Since we aim for a low fac-
torization rank, we do not extend the factors beyond 128 bit in their common
dimension, so that the factorization rank either coincides with or is lower than
the side length of a single fragment. Note that TCs do not directly perform
BMM as defined in Eq. (1), but compute a sum instead of the logical OR:

wij = POPC (X[i] &Y[j]) + zij =

k∑
l=1

(xil ∧ ylj) + zij (6)

The obtained value can then be transformed using wij ← wij ̸= 0 to acquire
the desired result for OR-based BMM.

3 Related Work

In an early attempt, Miettinen et al. adapted the Asso-algorithm [9] to BMF
by first generating a number of candidate vectors and greedily selecting k such
vectors to form a factor that minimizes the reconstruction error. Dynamic BMF
[8] provides an online algorithm that incorporates recent changes of the ground
truth into an existing factorization. Moreover, Miettinen and Vreeken worked
on the problem of the Minimum Description Length (MDL) for BMF [10]. Here,
the error of BMF is encoded in a separate matrix E, so that (A ◦B)⊕ E is an
exact representation of the ground truth.

More recently, Wan et al. [19] presented median expansion for BMF (MEBF).
This approach identifies patterns by permuting the rows and columns of the
original matrix, such that positive entries accumulate in the top right. The best
rank-1 approximation of the resulting matrix is then added to the factors of the
ground truth.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 5

Belohlavek and Vychodil [2] connected BMF to formal concept analysis by
proposing the GreCon and GreConD algorithms. Both algorithms greedily add
candidate rows to the factors and pursue a from-below approach, i.e., no false
positives are allowed. GreConD differs from GreCon by only considering a subset
of formal concepts which increases performance but yields comparable results.
These algorithms have since been extensively studied and optimized. Trnecka and
Vyjidacek revisited GreCon and presented GreCon2 [17] – speeding up the algo-
rithm without a loss in quality. In [1], GreConD+ is introduced, which deviates
from the from-below approach taken by GreConD. Here, accepted factors are ex-
panded, allowing false positives if the overall reconstruction error benefits from
the expansion. Trnecka and Krajča developed ParaGreConD [6], a performance
optimized version of the GreConD algorithm, by using multiple CPU-threads
to evaluate candidates. Note, that their implementation approaches BMF as a
coverage problem in the sense that it extends the factors until a desired coverage
factor is reached. This crucially differs from our approach, which tries to mini-
mize the reconstruction error for a fixed factorization rank. As ParaGreConD is
the only GreCon modification that explores parallelization, it is most relevant
to the work presented in this paper.

Similarly, Outrata and Trnecka [15] note that many previous BMF algorithms
work with greedy heuristics, sequentially improving the result. They introduce
a general parallelization scheme for such algorithms, that computes multiple
locally optimal subresults in parallel, and returns the best found approximation.
Here, the main benefit is the improved quality of the factorization, compared to
single-core execution.

Hess et al. implemented the PALTiling framework [4], featuring the algo-
rithms Panpal and Primp. Both algorithms are iterative in nature, but use
NVIDIA’s cuBLAS library to benefit from GPU-acceleration for individual op-
erations. PALTiling attempts to decompose the ground truth into densely popu-
lated tiles, allowing factors with values in [0, 1] for computation, and enforcing a
binary result by applying a threshold to the individual factor values. The main
difference between the algorithms is the use of different cost measures. Panpal
uses a L1 regularization, following the example of Panda [7], whilst Primp adapts
the cost function of Krimp [18], originally used in the context of MDL.

Also recognizing the inherent capability for massive parallelization of matrix
multiplication, cuBool [5] harnesses GPUs to compute a factorization. Here, an
initial factorization is guessed and iteratively improved by evaluating random
bit-flips, until an error threshold or time limit is reached. Multiple warps of
threads are used to explore different updates in parallel. Our work presented in
this paper builds upon the basic idea of cuBool [5], but extends it to gain even
higher speeds by making it amenable to TCs.

4 Algorithmic Method

Our overall algorithmic approach is based on local search: initially, random fac-
tor matrices are generated and iteratively improved. Within each iteration, we

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

6 A. Beyer et al.

update factors A and B successively, aiming to minimize the reconstruction er-
ror. The algorithm terminates, when it was unable to improve the reconstruction
for a certain number of iterations, indicating a local minimum.

Updates are generated by introducing minor changes to factor values by flip-
ping randomly selected bits. Subsequently, the resulting weighted reconstruction
error is calculated. Updates that improve the error are written to memory.

When generating updates, single bit-flips are preferred over multiple flips
within the same row. This has two main causes. First, flipping many bits at once
makes it impossible to determine which of the individual flips are beneficial, as
only the update as a whole can be kept or discarded. This potentially keeps non-
beneficial bit-flips or discards beneficial ones. Second, performing many bit-flips
tends to overpopulate the factors, leading to dense results and low precision.

Since updates in one factor may influence the error calculation for updates
in the other factor, each factor has to be updated successively. As the error
calculation of different values in the same factor can be done independently,
cuTeBool can harness GPUs to compute multiple updates on the same factor
in parallel. Our novel parallelization scheme using TCs is described in detail in
Sections 5.2 and 5.3.

A common issue with the randomized approach is that the algorithm may
produce an empty reconstruction. Especially on sparse datasets the initial recon-
struction will contain a relatively high number of false positives. This incentivizes
discarding true positives along with false positives to reduce the reconstruction
error. As a result, the algorithm may produce a zero reconstruction with high
probability, losing all information about the data.

To avoid this problem, we apply a weight w to the reconstruction error (see
Eq. (4)) that penalizes false negatives more than false positives in an attempt
to achieve a higher recall. I.e., a true positive is only discarded if at least w false
positives are discarded along with it. This weight is gradually decreased over
many iterations. At a weight of 1, false negatives and false positives are penal-
ized equally. Initial weight and reduction factor can be customized as command
line arguments. A higher weight typically favors higher recall at the expense of
precision. During execution, we monitor the (weighted) improvement achieved
by each update to detect local minima. We terminate, when it got stuck for a
certain number of iterations without finding an update, that would improve the
error. Alternatively, it can also be set to run for a fixed amount of iterations. Due
to the randomized nature of this approach, the algorithm may get stuck in a sub-
optimal minimum. To increase the chance of finding a good solution, we suggest
to spawn multiple instances with different seeds, as discussed in Section 5.

5 Parallelization Scheme

The goal of our implementation scheme is to minimize CPU-GPU communication
and let the GPU handle most of the computation. Therefore, after reading the
input data, the ground truth is moved to the GPU and the factors are initialized
directly on the GPU. Subsequently, our main optimization loop starts. In this

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 7

loop we iteratively update the factors by a few random bits, check the new errors
and decide whether to keep the new bits or not. Since each update of a factor
has to be performed independently from the other factor, we use two distinct
kernels: One for column and one for row updates, where each has to wait for the
previous update to be finished.

We support the initialization of multiple instances to be computed at once,
so that available GPU resources can be fully utilized. Each instance differs in
the random seed used to initialize the factors and to determine the bits flipped
in each iteration. This variety leads to possibly faster convergence and better
results than exploring a single seed. Only when the break condition is reached,
we choose the instance with the lowest error and move the computed factors back
to the CPU for possible storage. This overall workflow is shown in Algorithm 1.

5.1 GPU Data Layout

While our factor and ground truth matrices are read frequently, they generally
do not fit into the fast CUDA shared memory. Consequently, we use an efficient
data layout for global memory to allow for efficient coalesced memory accesses
as proposed by cuBool [5], seen in Fig. 1.

Our focus is on a decomposition rank of 128 or less, due to the perfect fit
into the Tensor Cores’ 8× 8× 128 fragment dimensions for 1-bit data types. To
allow the threads to perform coalesced data accesses, we store our factors in a
row-major fashion for A and column-wise for B, respectively, using the 4×32-bit
wide integer type uint4. For a decomposition rank lower than 128, we pad the
matrices with zeros to reach the fragment size.

For the ground truth matrix another storage layout is needed, since it has to
be read row- and column-wise, depending on which error we want to compute.
We compute rows and columns in batches of 32 to better accommodate the
required layout for TCs. Thus, we divide the ground truth into multiple 32× 32
submatrices. If necessary, the ground truth’s dimensions are padded with zeros
to a multiple of 32. Each submatrix can then be read in a coalesced way.

5.2 Update Kernels

While there are two distinct kernels for row and column updates, both work
analogously. Therefore, we explain the column kernel as example. A general
overview over its workflow is shown in Algorithm 2.

In the column kernel, the selected random bits of the factor B are changed
and the resulting error is calculated. If the changes reduce the error, they are
kept, else discarded. Since these steps are the most time consuming part of the
program, a lot of care has been taken to make them as efficient as possible.

Each thread block is assigned a batch of 32 consecutive columns of factor
B. These 32 columns are further sub-divided into 4 groups of 8 columns corre-
sponding to the width of the chosen TC fragments. Each batch is processed by

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

8 A. Beyer et al.

Algorithm 1 cuTeBool workflow
1: for i=0,.. instances-1 do in parallel
2: A[i], B[i] = random_init(seed)
3: while not stuck do
4: for j=0,.. break do
5: update(A, weight, new_seed)
6: update(B, weight, new_seed)
7: end for
8: update_parameters(factor, weight)
9: end while

10: errors[i] = final_error(A[i], B[i])
11: end parallel for
12: best = arg mini(errors[i])
13: return A[best], B[best]

Alg. 1: Most work is done on the GPU. Fig. 1: Data layout of the ground truth.

one GPU thread block, which we spawn with 32 warps. Thus 8 warps cooperate
on the same columns in a warp group. The values of A are needed by multi-
ple threads. Hence, we can benefit from coalesced reads and the lower latency
of shared memory, by splitting A into chunks of 1024 rows, that are read in a
coalesced way and temporarily stored in shared memory. This warp cooperation
scheme is illustrated in Fig. 2. Each of the warp groups update random bits of
their respective columns and then calculate the old and updated errors, splitting
the rows of A equally across the collaborating warps.

5.3 Error Computation on Tensor Cores

In our implementation, we address TCs using Parallel Thread Execution (PTX)
instructions, which are used as an intermediate code representation for the
NVIDIA CUDA compiler (NVCC). PTX allows for direct control over the regis-
ters participating in operations on Tensor Cores giving a transparent data layout.
This has the benefit, that data does not need to be written to and read from
memory between individual TC computations.

To decide if our updated columns lead to an improvement, we need to com-
pute the original error and the updated (weighted) error. Here, each warp group
is responsible for 8 columns of the ground truth matrix. Using this distribution,
each thread loads its respective column of B and its updated version into regis-
ters and iteratively works through the rows of the current chunk of A. For each
thread, the B values remain constant throughout kernel execution, removing
the need to read B multiple times. Once all rows of the current chunk of A are
exhausted, the block collectively loads the next chunk into shared memory and
proceeds iterating over A.

Within each 8×8 tile of the result matrix, each thread of one warp is assigned
two horizontally adjacent elements. This corresponds to a transposed submatrix,
compared to how the ground truth is stored. To avoid extra memory accesses
or computational overhead, we pass the input for each BMMA operation in a

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 9

Algorithm 2 Column Error Kernel
1: error = 0
2: b = to_shared()
3: for chunk = 0,.. num_chunks-1 do
4: sync()
5: frags = to_shared(A, Truth, chunk)
6: sync()
7: for frag in frags do
8: a, t = get_matrix_frags(frag)
9: result = tensor_core_bmma(b, a)

10: error += weighted_error(result, t)
11: end for
12: end for
13: total_error = accumulate_warp_errors()

Alg. 2: Note that the algorithm for
computing the row-wise errors only
differs in memory access and data ex-
change patterns.

Fig. 2: Warp distribution: each group
of 8 consecutive warps work together
on an 8-bit wide column. Warps are
numbered in hexadecimal format.

reversed order, which will produce the transposed result BTAT = (AB)T . After
each MMA, the threads compare their results to the ground truth and update
the reconstruction error accordingly.

Afterwards all partial errors for each column are accumulated. This process
is performed in three steps:

1. Gather the partial errors from collaborating threads within each warp using
warp-shuffles.

2. Employ shared memory to exchange these column-specific errors with coop-
erating warps.

3. Execute another warp shuffle to accumulate the errors that have been re-
ceived in the previous step.

These steps have to be performed both for the updated errors, as well as the
original one. If the total updated error for a column is lower than the previous
version, the change is kept and written to memory.

5.4 Automatic Hyperparameter Selection

Our program depends on a number of hyperparameters influencing cuTeBool’s
behavior and the quality of results. We automatically select the best parameters
for a good trade-off between reconstruction quality and efficiency, based on a grid
search on multiple datasets. The outcome on one representative smaller dataset,
namely AOffice (see Table 1), is illustrated in Fig. 3. While the starting weight,
shown in the left most plot, is dataset dependent, there is a general trade-off

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

10 A. Beyer et al.

0.1 0.2 0.3 0.4
F1-score

100

101

102
Ti
m
e
[s
]

Weight

0.1 0.2 0.3 0.4
F1-score

100

101

102
Factor

0.1 0.2 0.3 0.4
F1-score

100

101

102
Blocks

1
5
7

10
20

50
20.83

0.8
0.98

1
0.98

4
16

32
32

Fig. 3: Effect of hyperparameters on runtime (y-axis) and F1-score (x-axis) of
the AOffice dataset. Bottom right is better. Each point represents one run. Au-
tomatically set parameters are indicated as a star.

noticeable between reconstruction quality and runtime. Additionally, we noticed
that, if the weight is high, the algorithm tends to find more true positives on
sparser datasets early on. Thus, we implemented the following measure, clamping
the results to avoid extremes:

weight = max

{
3, min

{
#entries in ground truth

min{m,n}
, 50

}}
To alleviate the advantages of both high and low weights, we introduce a

factor reducing the weight each iteration. Thus, we can profit from a higher
starting weight, finding a lot of true positives early on, while reducing the runtime
in the long run. As seen in the center plot in Fig. 3, reducing the weight to fast
results in worse results. Thus, we always choose a factor of 0.98.

On large, very sparse datasets we find that the effect of a high, non-constant
starting weight is diluted by the high number of iterations needed. Thus we
introduce a minimum weight for datasets with a ground truth density of < 1%
and size of > 3 GB. As seen in Fig. 4 by an example of the Goodreads Comics
dataset (see Table 1), setting this parameter directly correlates to a trade-off in
precision vs. recall. Since the density has the greatest impact on the achievable
recall, we use it to determine the minimal weight:

min_weight = max {3, min {density · 1000, 10}}

As final parameter we take a look at the number of GPU thread blocks used,
which impacts the number of factors updated each iteration. This directly cor-
relates to how much the GPU is utilized by a single run of our algorithm. We
notice that, while more blocks yield to lower runtimes, the difference between
16 and 32 blocks is less noticeable than from 4 to 16. We exploit this fact by
launching four instances of our algorithm at once, each using a quarter of the
GPU’s SMs. Each instance is provided with a different seed, resulting in differ-
ent convergence times, but often with similar F1-scores. When the first instance
finds a suitable result, the program stops and the best result is returned.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 11

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

GR Comics

1.00 30.00

Min-weight

Fig. 4: The minimum weight steers the trade-off between recall and precision: a
higher value boosts recall at the expense of precision.

6 Experimental Results

We evaluate our implementation by comparing the performance of cuTeBool to
different state-of-the-art BMF tools. To gain a comprehensive understanding of
the performance of the algorithms under different settings, the tools are tested
on real-world datasets varying in densities and sizes, as displayed in Table 1.

The performance of our proposed algorithm is investigated by running cuTe-
Bool with a rank of 128 and automatically chosen hyperparameters as described
in Section 5.4. We compare against a set of different publicly available imple-
mentations, differentiating between two types of tools:

t1: Tools, that solve approximate BMF by means of a limited rank: cuBool [5],
Primp [4], Panpal [4], and MEBF [19]. cuBool was run with a rank of 32,
which is the highest supported rank. The others were run with a maximum
rank of 128, matching the maximum rank imposed by the GPUs TCs.

t2: One tool providing no option to limit the rank, possibly generating factor-
izations of much higher reconstruction rank: ParaGreConD [6].

In cuBool [5] different parameter settings are tested; we ran cuBool for each of
these, but only report the best of their results for each dataset. To account for
the random nature of both cuBool and cuTeBool, we performed five full runs
with different seeds and 4 instances each. We report the average of these 5 runs.
We note, that the quality metrics vary in less than 1% between these runs, i.e.,
the randomization mostly affects the runtime of the algorithm.

Primp and Panpal are both part of the PALTiling framework [4] and were
both run with at most 50, 000 iterations.

Moreover, we consider different CPU-based tools. MEBF [19] was run with
a threshold parameter of 0.1, and a default coverage factor of 0.9. We further
examined the performance of the CPU-parallel implementation of the GreConD
algorithm (ParaGreConD [6]), which does not limit the reconstruction rank.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

12 A. Beyer et al.

Table 1: Datasets used for benchmarking BMF tools
#Rows #Columns #Ones Density in % Notes

20News [11] 11,269 61,188 10,817 0.0016 (binarized) bag-of-words for 20Newsgroups articles
AMusic [13] 5,541 3,568 58,905 0.2979

Amazon user reviewsAOffice [13] 4,905 2,420 50,402 0.4246
ATools [13] 16,638 10,217 124,371 0.0732

GR Comics [20] 342,415 89,411 7,347,630 0.0240
}

Goodreads user reviews by book genreGR Fantasy [20] 726,932 258,585 55,397,550 0.0295
Movie25M [3] 162,541 56,887 25,000,095 0.2704 MovieLens movie ratings

StackOverflow (2 GB) [16] 131,072 131,072 3,954,912 0.0230
}

User interactions on stackoverflowStackOverflow (8 GB) [16] 262,144 262,144 6,671,042 0.0097

The CPU-based tools (MEBF, ParaGreConD) were tested on an AMD Ryzen
Threadripper 3990X CPU using 64 threads, while the GPU-based ones (cuTe-
Bool, cuBool, Primp, Panpal) were run on an NVIDIA H100 SXM GPU. Each
tool was given up to 5 hours to factorize each dataset.

The results of our benchmark are shown in Fig. 5. CuTeBool is the only tool
that is able to report results on all dataset sizes, with most other tools not being
able to process datasets of 1 GB or larger in time without throwing an error.

On smaller datasets, cuTeBool stands out with high speedups and F1-scores
compared to all competitors in t1. Generally, discovering new true positives
is harder for cuTeBool than removing false ones, resulting in high precision
accompanied by moderate recall values. This is partially counter-acted by the
minimal weight: on datasets where the weight is not reduced to one, recall and
precision tend to balance out more evenly.

Compared to cuBool, we report an increase in both precision and recall, in
turn leading to a higher F1-score; all while reaching a lower runtime, with an
average speedup of 2× for datasets that both tools processed. We attribute the
improvement in reconstruction quality to the greater reconstruction rank en-
forced by the usage of TCs and to our tuned hyperparameter choices. While
being able to process bigger datasets than the other competitors, cuBool started
failing at datasets of size 8 GB. In contrast, cuTeBool is only limited by the
amount of GPU memory and runtime. For the largest dataset, we stopped cuTe-
Bool at the time limit of 5 hours, but since cuTeBool is able to save results of
stopped runs, we can still report its results here.

For large-scale datasets we notice a decline in reconstruction quality for cuTe-
Bool, especially in precision. We attribute this to two main factors. Firstly, large
dimensions of the ground truth mean that each individual entry in the factors
is updated less often. This increases the runtime, but also makes good updates
harder to find. Moreover, large datasets tend to have a much higher Boolean
rank and are inherently harder to factorize and compress to a rank of 128. Both
showing the limits of the Tensor Core based maximum rank of 128. The CPU-
based tool MEBF is the only tool in t1 with comparable F1-scores to cuBool,
but is only able to fully process the 4 smallest datasets. While cuTeBool is faster
on almost all datasets, with speedups ranging from 8.5× up to 56.7×, MEBF is
able to beat cuTeBool in the 20News dataset by a factor of 1.16, resulting in an
average speedup of 20×. But in terms of F1-scores and precision cuTeBool wins
across the board, with MEBF achieving higher recall in 3 of the 4 datasets.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 13

0.0

0.5

1.0
F1

 sc
or
e

0.
03

89

0.
09

85

0.
01

44

dn
f

dn
f

0.
00

88

0.
08

19

* * er
r

er
r

er
r

er
r

0.
00

54

0.
00

70

* * er
r

er
r

er
r

er
r0.
09

20

er
r

er
r

er
r

er
r

er
r

dn
f

dn
f

dn
f

dn
f

dn
f

cuTeBool
cuBool

Primp
Panpal

MEBF
ParaGreConD

101

103

Ti
m
e
[s
]

dn
f

dn
f

dn
f

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

dn
f

dn
f

dn
f

dn
f

dn
f

0.
77

00

0.0

0.5

1.0

Pr
ec

isi
on

dn
f

dn
f

* * er
r

er
r

er
r

er
r

* * er
r

er
r

er
r

er
r0.
05

24

er
r

er
r

er
r

er
r

er
r

dn
f

dn
f

dn
f

dn
f

dn
f

AO
ffic
e (
~1
 MB

)

AM
usi
c (
~2
 MB

)

ATo
ols
 (~
21
 MB

)

20
Ne
ws
 (~
86
 MB

)

Mo
vie
25
M (

~1
GB
)

Sta
ckO

ve
rflo

w (
~2
GB
)

GR
 Co

mi
cs
(~
4G
B)

Sta
ckO

ve
rflo

w (
~8
GB
)

GR
 Fa
nta

sy
(~
23
GB
)0.0

0.5

1.0

Re
ca

ll

0.
09

01

0.
09

61

0.
01

99

0.
06

22

0.
00

73

dn
f

dn
f

0.
00

44

0.
04

33

* * er
r

er
r

er
r

er
r

0.
00

27

0.
00

35

* * er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

er
r

dn
f

dn
f

dn
f

dn
f

dn
f

Fig. 5: cuTeBool against competitors. When a library threw an error (err), did
not finish (dnf), or produced a 0 matrix (*) this is shown instead of a bar.

Primp and Panpal rarely produced good factorizations and – despite also
exploiting GPU parallelization – lag behind cuTeBool’s runtime. On 2 out of 5
datasets they processed, they only produced 0 matrices. Across the 3 datasets in
which they provided results, cuTeBool achieves an average speedup of 38× and
20× compared to Primp and Panpal, respectively.

The only library surpassing cuTeBool in terms of speed and quality for the
4 smallest datasets is ParaGreConD in t2. It is important to note here that
ParaGreConD always tries to find the perfect factorization, even at the cost
of a much higher reconstruction rank – often orders of magnitude higher. The
reconstruction ranks ParaGreConD produced in our tests are shown in Table 2.
Since the rank often blows up the size of the factor matrices to dimensions
higher than the ground truth, this library is not usable for compression. In our
benchmarks, ParaGreConD only achieved compression for the 20News dataset.
But, in contrast to cuTeBool, it fails to calculate a factorization for Movie25M
in time, and errors out for all larger datasets. Also, while it is faster in 3 cases,
cuTeBool is significantly faster on ATools, resulting in a similar average runtime.
Therefore, ParaGreConD is only usable for relatively small datasets of less than
1 GB in size and only if compression is not of interest.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

14 A. Beyer et al.

Table 2: Compression ratios compared to the ground truth size. Higher value
corresponds to higher compression. In our experiments cuTeBool always used a
rank k = 128.

AOffice AMusic ATools 20News Movie25M GR Fantasy

Rank ParaGreConD 2472 3958 10664 389 dnf dnf

Compr. Ratio ParaGreConD 0.66 0.55 0.59 24.46 dnf dnf
cuTeBool 12.66 16.96 49.45 74.35 329.22 1490.13

7 Conclusion

We have presented cuTeBool, a novel freely available parallel open-source BMF
framework for modern GPUs using Tensor Cores. It outperforms limited rank
competitors in speed, reaching average speedups of 2×, 20×, 38×, 20× com-
pared to cuBool, Panpal, Primp, MEBF, respectively, while achieving a better
reconstruction quality. In addition, cuTeBool is the only available method that
can scale to large matrix sizes > 1 GB. ParaGreConD [6] is only able to achieve
better reconstruction quality for small matrices at the expense of using unlim-
ited ranks leading to poor compression factors and very limited scalability (i.e.
it is unable to process larger matrices exceeding 1 GB in size within 5 hours).

Besides the performance benefits, we introduced automatic hyperparameter
selection, allowing the tool to reach a good trade-off between reconstruction
quality and performance. We showed that our tool is able to find good recon-
structions in a reasonable amount of time on very big datasets, only limited by
the GPU’s total memory. For larger datasets, cuTeBool is the only tool able to
perform the BMF, without throwing errors. For future work it would be interest-
ing to investigate the usage of a flexible reconstruction rank beyond 128. While
this may lead to extra computational costs and a lower compression ratio, it
could result in a better reconstruction quality for large datasets of high Boolean
rank.

Acknowledgments. The research in this paper is partly funded by Carl Zeiss Foun-
dation, grant number P2021-02-014 (TOPML project).

References

1. Belohlavek, R., Trnecka, M.: A new algorithm for boolean matrix factorization
which admits overcovering. Discrete Applied Mathematics 249, 36–52 (2018).
https://doi.org/10.1016/j.dam.2017.12.044

2. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. JCCS 76(1), 3–20 (2010). https://doi.org/
10.1016/j.jcss.2009.05.002

3. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
TiiS 5(4) (12 2015). https://doi.org/10.1145/2827872

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://doi.org/10.1016/j.dam.2017.12.044
https://doi.org/10.1016/j.dam.2017.12.044
https://doi.org/10.1016/j.jcss.2009.05.002
https://doi.org/10.1016/j.jcss.2009.05.002
https://doi.org/10.1016/j.jcss.2009.05.002
https://doi.org/10.1016/j.jcss.2009.05.002
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

cuTeBool 15

4. Hess, S., Morik, K., Piatkowski, N.: The PRIMPING routine - tiling through prox-
imal alternating linearized minimization. Data Min. Knowl. Discov. 31(4), 1090–
1131 (2017). https://doi.org/10.1007/S10618-017-0508-Z

5. Kobus, R., Lamoth, A., Muller, A., Hundt, C., Kramer, S., Schmidt, B.: cuBool:
Bit-parallel boolean matrix factorization on cuda-enabled accelerators. In: ICPADS
2018. pp. 465–472 (2018). https://doi.org/10.1109/PADSW.2018.8644574

6. Krajča, P., Trnecka, M.: Parallelization of the grecond algorithm for boolean matrix
factorization. In: Formal Concept Analysis. pp. 208–222. Springer International
Publishing, Cham (05 2019). https://doi.org/10.1007/978-3-030-21462-3_14

7. Lucchese, C., Orlando, S., Perego, R.: Mining top-k patterns from binary
datasets in presence of noise. pp. 165–176 (04 2010). https://doi.org/10.1137/1.
9781611972801.15

8. Miettinen, P.: Dynamic boolean matrix factorizations. In: ICDM 2012. pp. 519–528
(2012). https://doi.org/10.1109/ICDM.2012.118

9. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Transactions on Knowledge and Data Engineering 20(10), 1348–
1362 (2008). https://doi.org/10.1109/TKDE.2008.53

10. Miettinen, P., Vreeken, J.: Mdl4bmf: Minimum description length for boolean
matrix factorization. ACM Trans. Knowl. Discov. Data 8(4) (10 2014). https:
//doi.org/10.1145/2601437

11. Mitchell, T.: Twenty Newsgroups. UCI Machine Learning Repository (1999). https:
//doi.org/10.24432/C5C323

12. Nau, D.S., Markowsky, G., Woodbury, M.A., Bernard Amos, D.: A mathematical
analysis of human leukocyte antigen serology. Mathematical Biosciences 40(3),
243–270 (1978). https://doi.org/10.1016/0025-5564(78)90088-3

13. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In: 2019 EMNLP-IJCNLP. pp. 188–197. ACL,
Hong Kong, China (Nov 2019). https://doi.org/10.18653/v1/D19-1018

14. NVIDIA Corporation: CUDA C++ Toolkit Documentation, https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html#wmma, accessed 18 Oct 2024

15. Outrata, J., Trnecka, M.: Parallel exploration of partial solutions in boolean matrix
factorization. Journal of Parallel and Distributed Computing 123, 180–191 (2019).
https://doi.org/https://doi.org/10.1016/j.jpdc.2018.09.014

16. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: WSDM
’17. p. 601–610. ACM, NY, USA (2017). https://doi.org/10.1145/3018661.3018731

17. Trnecka, M., Vyjidacek, R.: Revisiting the grecon algorithm for boolean matrix fac-
torization. Knowledge-Based Systems 249, 108895 (2022). https://doi.org/https:
//doi.org/10.1016/j.knosys.2022.108895

18. Vreeken, J., Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Min. Knowl. Discov. 23, 169–214 (07 2011). https://doi.org/10.1007/
s10618-010-0202-x

19. Wan, C., Chang, W., Zhao, T., Li, M., Cao, S., Zhang, C.: Fast and efficient boolean
matrix factorization by geometric segmentation. Proc. of the AAAI Conf. on AI
34(04), 6086–6093 (Apr 2020). https://doi.org/10.1609/aaai.v34i04.6072

20. Wan, M., McAuley, J.: Item recommendation on monotonic behavior chains. In:
RecSys ’18. p. 86–94. ACM, NY, USA (2018). https://doi.org/10.1145/3240323.
3240369

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_18

https://doi.org/10.1007/S10618-017-0508-Z
https://doi.org/10.1007/S10618-017-0508-Z
https://doi.org/10.1109/PADSW.2018.8644574
https://doi.org/10.1109/PADSW.2018.8644574
https://doi.org/10.1007/978-3-030-21462-3_14
https://doi.org/10.1007/978-3-030-21462-3_14
https://doi.org/10.1137/1.9781611972801.15
https://doi.org/10.1137/1.9781611972801.15
https://doi.org/10.1137/1.9781611972801.15
https://doi.org/10.1137/1.9781611972801.15
https://doi.org/10.1109/ICDM.2012.118
https://doi.org/10.1109/ICDM.2012.118
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1145/2601437
https://doi.org/10.1145/2601437
https://doi.org/10.1145/2601437
https://doi.org/10.1145/2601437
https://doi.org/10.24432/C5C323
https://doi.org/10.24432/C5C323
https://doi.org/10.24432/C5C323
https://doi.org/10.24432/C5C323
https://doi.org/10.1016/0025-5564(78)90088-3
https://doi.org/10.1016/0025-5564(78)90088-3
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://doi.org/https://doi.org/10.1016/j.jpdc.2018.09.014
https://doi.org/https://doi.org/10.1016/j.jpdc.2018.09.014
https://doi.org/10.1145/3018661.3018731
https://doi.org/10.1145/3018661.3018731
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108895
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108895
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108895
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108895
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1609/aaai.v34i04.6072
https://doi.org/10.1609/aaai.v34i04.6072
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.1145/3240323.3240369
https://dx.doi.org/10.1007/978-3-031-97629-2_18
https://dx.doi.org/10.1007/978-3-031-97629-2_18

