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Abstract. This study presents two novel approaches for developing
a multiple-meta-instance selection method, an advanced algorithm de-
signed for e�cient pruning of training sample in classi�cation problems.
The proposed meta-instance selection framework reformulates the tradi-
tional instance selection problem by introducing a meta-feature space,
a problem-agnostic representation space. The transformation enables
instance selection to be framed as a classi�cation task in the meta-
feature space, facilitating e�cient computation with a time complexity
of O(nlog(n)). A standard classi�cation algorithm, such as Random For-
est, can then be employed in the meta-feature space to determine the
inclusion or exclusion of individual samples.
To enhance performance, we explore two strategies for combining mul-
tiple meta-instance selection algorithms: (1) constructing an ensemble
of meta-classi�ers and (2) concatenating many meta-sets. Experimen-
tal evaluations demonstrate that the meta-set concatenation approach
surpasses both classical instance selection techniques and existing meta-
instance selection methods. Moreover, the proposed algorithm signi�-
cantly accelerates the instance selection process�achieving even by two
or three orders of magnitude speed-up, depending on dataset size and
the reference instance selection method.

Keywords: Instance selection · classi�cation · knowledge distillation ·

data pruning

1 Introduction

As datasets used in machine learning applications continue to expand in size and
complexity, managing, storing, and processing them e�ciently is getting more
challenging [19]. One of the approaches to tackle these problems is dataset prun-
ing [13]. This is a group of methods used to reduce the size of a dataset while
preserving its essential characteristics, making it a valuable tool for improving
data management, model training, and overall system performance. More pre-
cisely it can be viewed as a process of selecting or constructing a subset of the
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most informative and representative data points from a larger dataset, with the
goal of retaining the majority of the information and patterns present in the
original data [15]. There are two main approaches including model-independent
pruning and model-dependent pruning. The �rst group selects samples based on
some external data characteristics [5], while the second one is also called dataset
distillation [18] where the �nal model is used to select or construct new train-
ing samples. In both cases, the resulting dataset is typically much smaller. The
reduction process involves identifying the most critical data points that capture
the underlying structure and relationships within the data and removing redun-
dant or noisy data points that do not contribute signi�cantly to the task the
model is built for.

One of the most commonly used techniques for dataset pruning is instance
selection. Comprehensive reviews of instance selection methods can be found in
[8] and [10]. This family of techniques was initially develped as a tool to improve
the k-nearest neighbor (kNN) classi�ers, but later it was e�ectively adopted also
to other classi�cation methods [3,7].

However, instance selection su�ers from signi�cant computational complex-
ity, as most algorithms iteratively evaluate the nearest-neighbor graph to prune
redundant or noisy samples. To address this problem, a method called Meta In-
stance Selection (MetaIS) was proposed in [2]. This method tackles scalability
issues by reframing the instance selection problem as a classi�cation problem
in a meta-feature space. In this approach, each sample is mapped into a new
meta-feature space that describes the local properties of the nearest-neighbor
graph, and a meta-classi�er is used to determine whether a given sample should
be retained or pruned. The meta-classi�er is initially trained to emulate the be-
haviour of a speci�c instance selection algorithm. This is achieved by using the
output of the classical instance selection method to label samples in the meta-
feature space as either "to be kept" or "to be removed" and training a classi�er
(meta-classi�er). Consequently, a single meta-classi�er corresponds to a single
instance selection algorithm.

In this work, we propose extending the capabilities of meta-instance selection
by combining the properties of multiple instance selection methods into a single
method which is called multiple-meta-instance selection (MMIS). This approach
allows for further improvement of the properties of classical MetaIS solutions
and achieving even higher performance without a�ecting execution time.

In the article, we discuss and empirically compare two methods of construct-
ing MMIS. The �rst method is based of combining multiple meta-classi�ers of
MetaIS into a classi�ers committee that combines the properties of individual
instance selection methods into one system. The second approach is based on
concatenating the meta-datasets obtained from the base instance selection algo-
rithms into one large dataset, and consequently training a single meta-classi�er
on the combined meta-dataset. This assures gaining the knowledge from each
base instance selection method.

The process of model evaluation allows for selecting the optimal combination
of base-instance selection methods that complement each other. This allows for
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achieving superior performance compared to individual methods. Importantly,
the gain in performance is achieved with minimal additional computational com-
plexity.

The structure of this paper is as follows: �rst, we present an overview of meta-
instance selection methods (section 2). Next, in section 3 the concept of multi
meta instance selection is introduce. Section 4 describes setup of the experiments
and results are presented in Section 5. Finally, the concluding section summarizes
the �ndings and outlines potential directions for future research.

2 Meta Instance Selection

Meta-instance selection reformulates the problem of selection or rejection of a
sample as a binary classi�cation problem, where positive samples are labeled as
"to keep" and negative samples are labeled as "to remove".

To make this process generic and applicable to any dataset, a common feature
space is required in which the meta-classi�er (a classi�er responsible for assessing
instance importance) operates � the so-called meta-feature space. In [2] it is
suggested to use balanced random forest as a meta-classi�er, and the meta-
feature space is de�ned using local properties of the nearest neighbor graph
(NNG), where each sample is characterized by statistics derived from the NNG.
More details regarding the meta-feature space are provided in subsection 2.1.
The basic concept is shown in Figure 1.

Fig. 1: The concept of MetaIS algorithm. The left �gure shows the transformation
process, where for the input dataset an NNG is constructed and properties of
each vertex constitute the meta-feature space. Labeling of samples in the meta-
set (marked in yellow) is applied only during the preparation of the meta-training
set. The right �gure shows the transformation results from regular to the meta-
features space.

A schematic overview of the entire system is shown in Figure 2, which is
divided into two components: the training phase and the prediction/selection
phase. The training phase illustrates the process of constructing the meta-classi�er,
while the prediction/selection phase represents the process of instance selection
using the meta-classi�er.

The training phase begins by applying a speci�c instance selection method,
referred to as the reference method. This reference instance selection method is
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Fig. 2: The scheme of the MetaIS algorithm including preparation of the meta-
set (green color), training meta-classi�er (blue color), and application of MetaIS
for pruning new dataset (orange color).

executed on multiple datasets (the larger the number of datasets, the better the
performance), and each sample in these datasets is labeled as either "to keep"
or "to remove" based on the results of the reference method. Subsequently, for
each sample in each dataset, meta-feature extraction is performed. The resulting
pairs, represented as < xmeta, {yPositive(to keep), yNegative(to remove)} >, form the
training set for the meta-classi�er.

Following meta-feature extraction, the features for each sample in each dataset
are normalized. This normalization step is crucial because the distances within
individual datasets may vary signi�cantly. After normalization, all meta-datasets
are concatenated to create a uni�ed training set for a binary classi�er.

During the prediction phase, for a new dataset, meta-features are �rst ex-
tracted. Speci�cally, for each training sample (x, y in the dataset, its meta-
features xmeta are computed. The meta-classi�er is then applied to the samples
represented using meta-features. Instead of producing a classical binary decision,
the model typically outputs a probability score, which represents the importance
of each instance rather than a de�nitive decision. Finally, based on these impor-
tance scores, the samples are ranked, and a selection is made according to a
user-de�ned threshold Θ, where 0 indicates no instance selection and 1 indicates
prunning the entire dataset, or based on preferences regarding the desired output
size of the dataset.

2.1 Meta-Feature Space

As previously indicated, the meta-feature space is determined based on proper-
ties derived from the nearest neighbor graph (NNG). These meta-features are
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extracted from various attributes that were initially used in the reference in-
stance selection methods. The details are provided in [2], and here, only the
names and descriptions of the extracted features are presented:

� Average distance to k nearest neighbors from the same class: Among k near-
est neighbors, �nd samples with the same class label as the query sample
and get their average.

� Average distance to k nearest neighbors from the opposite class: Similar to
the above, but calculate the average distance to the k nearest neighbors that
belong to the opposite class of the query sample.

� Average distance to k nearest neighbors from any class: Compute the average
distance to all k nearest neighbors, irrespective of class label.

� Minimum distance to samples from the same class: Determine the distance
to the nearest neighbor that belongs to the same class as the query sample.

� Minimum distance to samples from the opposite class: Calculate the distance
to the nearest neighbor that belongs to the opposite class of the query sample.

� Minimum distance to samples from any class: Determine the distance to the
overall nearest neighbor, irrespective of class label.

� Number of samples from the same class among k nearest neighbors: Perform
a vote among the k nearest neighbors to count how many belong to the same
class as the query sample.

� Number of samples from the opposite class among k nearest neighbors: Sim-
ilar to the above, but count how many of the k nearest neighbors belong to
the opposite class.

When constructing the meta-feature space, these meta-features are computed
for multiple values of k, speci�cally k = {3, 5, 9, 15, 23, 33} as indicated in [2].
As demonstrated, the use of multiple values of k, combined with di�erent types
of meta-features, is critical for accurately characterizing the neighborhood of
the query sample. This approach enables a more precise determination of the
sample's importance.

3 Combining Multiple Instance Selection Methods

The Meta Instance Selection (MetaIS) method o�ers several advantages over
traditional instance selection techniques, particularly in its ability to e�ciently
combine individual instance selection methods. While the concept of instance
selection ensembles was initially introduced in [1] and later re�ned in [9], the
MetaIS approach signi�cantly enhances this process by enabling more e�cient
combinations of instance selection methods. Instead of running multiple compu-
tationally expensive instance selection algorithms, MetaIS leverages two e�cient
strategies: (1) an ensemble of meta-classi�ers and (2) a meta-classi�er trained on
concatenated meta-datasets representing reference instance selection methods.
A detailed explanation of these approaches is provided below.
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Ensemble of Meta-Classi�ers This approach is based on the idea that each meta-
classi�er is trained to mimic a speci�c reference instance selection method for
example HMN-EI, CCIS, etc. Since these reference methods di�er in the subsets
they select, the meta-datasets used for training meta-classi�ers are distinct in
terms of their labeling. Consequently, meta-classi�ers trained on di�erent ref-
erence methods exhibit variations in outputs (predictions) assuring diversity of
the ensemble members. The challenge lies in determining which meta-classi�ers
should be combined to ensure they complement one another e�ectively and en-
hance overall performance.

Concatenation of Meta-Datasets An alternative strategy for improving meta-
classi�er performance involves merging meta-datasets labeled according to spe-
ci�c reference instance selection methods into a single dataset. A single meta-
classi�er is then trained on this combined dataset. This approach results in a
signi�cantly larger training meta-dataset since it integrates subsets from multi-
ple reference methods. However, the computational cost of training the meta-
classi�er is incurred only once, making this method practical and e�cient in
terms of training overhead.

Both approaches provide �exible and scalable solutions for combining multi-
ple instance selection methods while maintaining computational e�ciency, thereby
addressing the key limitations of traditional instance selection techniques. Since
the method combines multiple MetaIS methods into one system it is abbreviated
as Multiple-Meta-Instance-Selection (MMIS).

4 Setup of the Experiments

The two proposed MMIS methods were evaluated empirically and validated on
multiple datasets of varing size and domain. The details of the experiments are
provided below.

Fig. 3: The procedure used for performance assessment of the MetaIS and MMIS
method. MetaIS/MMIS training is marked in green, brown is application of
MMIS/MetaIS, and blue is standard cross-validation process.
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Table 1: Characteristics of the datasets used in the experiments.
Dataset # samples # attr. # classes

1 abalone 4177 8 28

2 banana 5300 2 2

3 electricity 45312 8 2

4 letter 20000 16 26

5 magic 19020 10 2

6 nursery 12960 8 5

7 optdigits 5620 64 10

8 page-blocks 5472 10 5

9 penbased 10992 16 10

10 phoneme 5404 5 2

11 ring 7400 20 2

12 satimage 6435 36 6

13 shuttle 57999 9 7

14 spambase 4597 57 2

15 texture 5500 40 11

16 twonorm 7400 20 2

17 php89ntbG 488565 8 2

4.1 Evaluation procedure

The experiments were divided into two parts. In the �rst part, the leave-one-
dataset-out methodology was employed to evaluate the performance of meta-
instance selection. In the second part, the meta-classi�er was tested on a single
independent, large dataset containing around 500,000 samples. The leave-one-
dataset-out method involves taking a collection of datasets (in this case, datasets
with fewer than 100,000 samples), removing one dataset for testing, and using all
remaining datasets to train the meta-classi�er. Each dataset held out for testing
was then pruned and the performance of the �nal classi�er was assessed using
5-fold cross-validation. During the cross-validation procedure, the training data
was �rst �ltered using the instance selection method and subsequently evaluated
using a 1NN classi�er as shown in Fig. 3. The 1NN classi�er is a standard practice
in instance selection studies, and as meta-classi�er the balanced random forest
was used.

Since meta-instance selection outputs the probability of retaining a sam-
ple a curve representing the relation between reduction-rate and classi�cation
accuracy can be constructed using di�erent Θ values. In particular, we used
Θ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Therefore, for measuring the overall
performance the Area Under the Accuracy-Reduction Rate Curve (AUARRC)
was used, as described in [1]. This metric is calculated by determining the area
de�ned by the polygon formed between the performance of the 1NN classi�er (at
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a zero reduction rate) and the results achieved by the instance selection method
at a reduction rate greater than zero (Θ > 0).

4.2 Datasets used in the experiments

The experiments were conducted on 17 datasets of various sizes. These datasets
were obtained from the Keel Project repository [14], where they were prepro-
cessed and provided in a format suitable for 5-fold cross-validation. While the
repository contains additional, smaller datasets, only datasets with at least 4,000
samples were included in the study. This decision was made because removing
redundant samples is not particularly useful for small datasets. In the experi-
ments one larger datasets the php89ntbG dataset was obtained. It was obtained
from the OpenML project [6].

4.3 Evaluation parameters

In Section 3, it was noted that the e�ectiveness of combined meta-instance se-
lection (MMIS) depends on the choice of reference instance selection methods.
Five methods were used to label meta-set samples: Edited Nearest Neighbor ENN
[16], Drop3 [17], Interactive Case Filtering ICF [4], Hit Miss Network Editing

HMN-EI [11], and Class Conditional Instance Selection CCIS [12]. Each method
has distinct behavior, so selected methods must complement each other to avoid
performance degradation. Various combinations were tested (see Table 4, bot-
tom rows) to �nd the optimal set. The �ve evaluated combinations were: CCIS,
ICF, CCIS, ICF, Drop3, CCIS, ICF, Drop3, HMN-EI, CCIS, ICF, HMN-EI, and
CCIS, ICF, HMN-EI, ENN.

The primary criterion for selecting the optimal combination was the perfor-
mance of the individual methods, where CCIS and ICF consistently achieved
the highest accuracy and compression rates. These two methods served as the
foundation, with additional methods (HMN-EI, Drop3, ENN) incorporated se-
quentially in order of their individual performance.

The results for the individual models were obtained for Θ = {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9}, with performance assessment conducted using a 1NN clas-
si�er. For all reference instance selection methods (ENN, Drop3, CCIS, ICF and
HMN-EI), the number of nearest neighbors was set to 3, as wherever parameter
setup was required (3 is the default value suggested by the authors of particular
methods). The experiments were carried out using our MetaIS library, imple-
mented in Python and available at https://github.com/mblachnik/MetaIS.
The reference instance selection methods were implemented in the RapidMiner
Information Selection Extension https://github.com/mblachnik/infoSel, along
with implementations from the Keel Project for selected algorithms (HMN-EI,
CCIS).

The experiments consisted of two parts. In the �rst part, various combina-
tions of reference methods were compared to identify the most e�ective combina-
tion. In the second part, the best-performing combination was compared against
the individual reference instance selection methods.
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Table 2: Results representing AUARRC performance measure obtained for two
type of MMIS approaches - the meta-classi�er based ensemble and concatenated
meta-dataset - for various combination of base members. The last three rows
summarize the obtained results. Statistically signi�cant results are marked in
bold (α = 0.05)
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Table 3: Summary statistics - mean di�erence and p-value representing the
comparison of the leading solution (see Table 2) DE(CCIS,ICF,Drop3,HMN-
EI) method with the remaining solutions obtained using concatenated datasets

approach. The statistics were obtained using data available in Table 2
(CCIS, ICF,
Drop3, HMN-
EI)

(CCIS,ICF,
HMN-EI)

(CCIS, ICF,
HMN-
EI,ENN)

(CCIS,ICF) (CCIS,ICF,
Drop3)

Mean di�. ref. 0.0020 0.0021 0.0217 0.0258

p-value ref. 0.8536 0.7563 0.0007 0.0026

5 Results

The �rst set of experiments was devoted to comparing the two approaches of
creating MMIS, namely the meta-classi�ers ensemble and concatenated meta-
datasets. Within this comparison also the members of the ensemble including
various IS models discussed in 4.3 were compared. The obtained results are
presented in Table 2. The values represent the average AUARRC obtained using
the given MMIS method for pruning training samples. For each dataset, the
results are grouped according to the combination of ensemble members and
according to the type of ensemble.

The last three rows of Table 2 summarize the obtained results. These are
the mean AUARRC obtained by aggregating performances for each dataset,
the average di�erence between the obtained results, and the p-value obtained
using the Wilcoxon signed rank test obtained when comparing the two MMIS
approaches. The average di�erence was calculated analogously to the Wilcoxon
test, that is by mean(left−right), where left are the results of models ensemble

and right represent the column with datasets ensemble. A negative value of this
indicator suggests that the datasets ensemble outperforms models ensemble, and
a positive value indicates the opposite, that the models ensemble outperforms
datasets ensemble.

The obtained results indicate that in all cases the mean di�erence is negative
indicating that the combined meta-datasets performs better, and in all cases
the di�erence is statistically signi�cant, assuming α = 0.1. When comparing
the solutions among various members of the ensemble for the combined meta-

datasets approach the best results are obtained by (CCIS, ICF, Drop3, HMN-EI),
therefore this solution was used as a reference when comparing with the other
methods.

Based on the results presented in Table 2, we conducted additional statistical
analyses comparing the best-performing model (CCIS, ICF, Drop3, HMN-EI)
with the remaining MMIS models from the concatenated meta-dataset families.
These statistics are provided in Table 3. According to the results, the second-
best performance is achieved by (CCIS, ICF, HMN-EI), followed by (CCIS, ICF,
HMN-EI, ENN) in third place. While the di�erences among these three methods
are not statistically signi�cant, the positive values of themean di�erences suggest
that the (CCIS, ICF, Drop3, HMN-EI) based solution is the leading combination
of reference instance selection methods. For the remaining approaches (CCIS,
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(a) Banana (b) Letter

(c) Satimage (d) Php89ntbG

Fig. 4: Comparison of the prediction performance vs reduction rate obtained for
all evaluated MMIS methods on selected datasets. The CE( ) indicates classi�ers
ensemble and DE( ) indicates concatenated meta-datasets.

ICF) and (CCIS, ICF, Drop3), the di�erences in performance are statistically
signi�cant and worse then the best method.

A more detailed comparison of the di�erences is presented in Figure 4, which
illustrates the accuracy-reduction rate plots for four selected datasets. The re-
sults indicate that, in all cases, the models highlighted in solid red, solid purple,
and solid light green outperform the competitors. These models correspond to
the concatenated meta-dataset approach based on concatenation of (CCIS, ICF,
HMN-EI, ENN), (CCIS, ICF, HMN-EI), and (CCIS, ICF, Drop3, HMN-EI), re-
spectively. Furthermore, in each case, the area under the F1-reduction rate curve
is the largest, con�rming their superior performance. Conversely, the approach
based on (CCIS, ICF, Drop3) members yields the weakest results.

Next, we compared the best-performing MMIS model with the standard
MetaIS models. The results, presented in Table 4, demonstrate that in all cases,
the MMIS model is statistically signi�cantly superior to each individual MetaIS
model. The mean performance di�erences further highlight the advantages of
the MMIS-based approach. A more detailed visualization is provided in Figure
5, where performance-reduction rate plots are shown for four datasets, includ-
ing the best MMIS method and the standard MetaIS models. The dominance
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Table 4: Results represent the standard MetaIS models and the best MMIS
model. The last three rows summarize the results indicating the mean perfor-
mance over all datasets, the mean di�erences in performance considering the
MMIS model denoted as (CCIS, ICF, Drop3, HMN-EI) as a reference for the
comparison and the p-value of the Wilcoxon signed-rank test.

Dataset
DE(CCIS,ICF,
Drop3,HMN-EI)

Meta HMN-EI Meta ENN Meta CCIS Meta ICF Meta Drop3

mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

banana 0.8745 ± 0.0073 0.6350 ± 0.0134 0.2839 ± 0.0055 0.8263 ± 0.0091 0.8610 ± 0.0076 0.8385 ± 0.0107

electricity-norm. 0.7963 ± 0.0009 0.7002 ± 0.0032 0.4727 ± 0.0030 0.6861 ± 0.0024 0.7401 ± 0.0034 0.7174 ± 0.0019

letter 0.8697 ± 0.0031 0.5845 ± 0.0033 0.3574 ± 0.0014 0.8611 ± 0.0025 0.7773 ± 0.0031 0.7381 ± 0.0062

magic 0.8054 ± 0.0043 0.5963 ± 0.0051 0.3526 ± 0.0034 0.7553 ± 0.0062 0.7009 ± 0.0036 0.6818 ± 0.0006

nursery 0.8862 ± 0.0145 0.7858 ± 0.0212 0.4021 ± 0.0305 0.8707 ± 0.0121 0.8817 ± 0.0125 0.8130 ± 0.0103

optdigits 0.9400 ± 0.0035 0.4241 ± 0.0053 0.1528 ± 0.0038 0.9427 ± 0.0057 0.9113 ± 0.0036 0.8549 ± 0.0049

page-blocks 0.9545 ± 0.0033 0.3769 ± 0.0047 0.1135 ± 0.0025 0.9369 ± 0.0093 0.9063 ± 0.0127 0.8563 ± 0.0189

penbased 0.9763 ± 0.0024 0.3319 ± 0.0070 0.0505 ± 0.0012 0.9687 ± 0.0011 0.9646 ± 0.0025 0.9591 ± 0.0038

phoneme 0.8361 ± 0.0118 0.6084 ± 0.0114 0.3822 ± 0.0014 0.8242 ± 0.0071 0.8033 ± 0.0084 0.7651 ± 0.0036

ring 0.6780 ± 0.0086 0.7857 ± 0.0095 0.3258 ± 0.0018 0.7492 ± 0.0084 0.6563 ± 0.0100 0.7133 ± 0.0035

satimage 0.8745 ± 0.0050 0.5032 ± 0.0041 0.2694 ± 0.0011 0.8491 ± 0.0041 0.7716 ± 0.0082 0.7386 ± 0.0041

shuttle 0.9951 ± 0.0006 0.5646 ± 0.0075 0.0060 ± 0.0003 0.9965 ± 0.0005 0.9922 ± 0.0012 0.9969 ± 0.0005

spambase 0.8445 ± 0.0120 0.6508 ± 0.0113 0.3416 ± 0.0112 0.7509 ± 0.0085 0.7479 ± 0.0087 0.7781 ± 0.0070

texture 0.9489 ± 0.0074 0.5360 ± 0.0072 0.1571 ± 0.0032 0.9539 ± 0.0043 0.8959 ± 0.0081 0.8529 ± 0.0125

twonorm 0.9456 ± 0.0038 0.5655 ± 0.0068 0.1954 ± 0.0044 0.9415 ± 0.0041 0.9208 ± 0.0039 0.9008 ± 0.0026

php89ntbG 0.9478 ± 0.0003 0.4754 ± 0.0032 0.1660 ± 0.0009 0.9456 ± 0.0005 0.9278 ± 0.0012

Mean 0.8858 0.5703 0.2518 0.8662 0.8412 0.8137

Mean di�. 0.3156 0.6340 0.0197 0.0447 0.0681

p-value 0.0002 0.0000 0.0182 0.0000 0.0004

of the MMIS approach is evident, as indicated by the dark blue curve, which
consistently outperforms all other methods. Additionally, the MMIS method fre-
quently surpasses the baseline reference instance selection methods, marked with
an ×, which were originally used for labeling the meta-datasets in the training
process.

5.1 Execution time comparison

The �nal experiment demonstrates the e�ciency of the proposed method in
accelerating instance selection (Figure 6). Speedup was calculated as the ratio of
the execution time of base instance selection methods to that of MMIS (solid line)
and MetaIS (dotted line). Results show that speedup scales with the logarithm
of sample size or better, with values below 1 only for small datasets (4,000�5,000
samples). The highest speedup�165Ö�was observed for Drop3.

This gain results from reduced time complexity, as MMIS requires only a sin-
gle pass over the data. It includes meta-feature extraction in O(n log n) time and
classi�cation using a balanced random forest in O(n log n∗). In the concatenated
meta-dataset approach, execution time depends only on classi�er prediction time
O(log n∗), where n∗ is tree depth. For large datasets, MMIS and MetaIS have
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Fig. 5: Comparison of the prediction performance vs reduction rate obtained for
classical MetaIS methods and the best performing (CCIS, ICF, Drop3, HMN-
EI) method based on concatenated meta-datasets approach. The DE( ) indicates
concatenated meta-datasets.

similar runtimes due to shared meta-feature extraction and single classi�er us-
age. Di�erences appear mainly for Drop3 and small datasets, where MetaIS built
shallower trees, resulting in higher speedup for MMIS.

A di�erence between MetaIS and MMIS appears during the meta-classi�er
training. Here, for the concatenated meta-datasets approach used in MMIS the
training dataset becomes larger since it is obtained by concatenation of multi-
ple MetaIS datasets. But since the balanced random forest is used as a meta-
classi�er, the training time is acceptable because it scales by O(k · (n log n))
where k is the number of concatenated datasets. That is k- times slower than
the MetaIS, but this process is conducted only once, and the meta-classi�er can
be used for any dataset. In the experiments, a single training took a couple of
minutes.

6 Conclusions

This study introduced a novel approach to meta-instance selection, integrating
multiple MetaIS methods into a uni�ed framework called Multiple Meta Instance
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Fig. 6: Speed-up of the best proposed MMIS methods over the reference instance
selection methods - marked with a solid line, and speed-up of MetaIS over the
same reference instance selection, marked with a dotted line.

Selection (MMIS). Two strategies were explored: one leveraging an ensemble
of meta-classi�ers and another combining multiple individual methods by con-
catenating meta-training sets into a single dataset used to train meta-classi�er.
Experimental results demonstrate that the concatenated meta-dataset approach
outperforms other approaches, both in terms of accuracy and reduction rate.

Furthermore, in the study we identi�ed the most e�ective base-members.
Among the tested methods, three demonstrated superior performance namely
(CCIS, ICF, Drop3, HMN-EI), (CCIS, ICF, HMN-EI, ENN), and (CCIS, ICF,
HMN-EI), with the (CCIS, ICF, Drop3, HMN-EI) yielding the best overall re-
sults.

In addition to improved selection accuracy, the proposed method signi�cantly
accelerates the instance selection process compared to baseline reference meth-
ods, o�ering substantial computational e�ciency gains. These �ndings highlight
the potential of meta-instance selection ensembles as a promising direction for
optimizing data reduction in classi�cation tasks. The proposed approach can
be easily adapted also to other tasks such as support vector selection for the
kernel-based methods, where instead of instance selection-based labeling sup-
port vectors can be used for labeling the meta-set.
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