
Proof of Training: Obtaining Verifiable ML
Models by Delegating Training to a Blockchain

Network

Łukasz Krzywiecki1[0000−0002−5326−3627] and
Gabriel Wechta2[0009−0009−8560−5300]

1 Department of Fundamentals of Computer Science, Wroclaw University of Science
and Technology, Wroclaw, Poland, lukasz.krzywiecki@pwr.edu.pl

2 Department of Cryptology, NASK National Research Institute Location, Warsaw,
Poland, gabriel.wechta@nask.pl

Abstract. The recent rise of Bitcoin has sparked an unprecedented
trend of enthusiasts acquiring expensive hardware for mining. This self-
perpetuating race, driven by Bitcoin’s PoW consensus mechanism, has
led to the creation of massive computational centers dedicated solely to
solving impractical hash inversions. However, these computational re-
sources could be redirected toward more meaningful tasks if nodes were
properly incentivized.
In this paper, we introduce Proof of Training (PoT), a novel consen-
sus mechanism that offers two key advantages over previous approaches.
First, it replaces wasteful computations with ML training. Second, by
aligning the inherent distrust between nodes in blockchain networks with
distributed model training, PoT not only achieves consensus but also
produces a trained model along with proof that it was trained on the
client-provided data.
PoT enables clients to hire the blockchain network to provably train arbi-
trary models using their provided datasets and architectures. Meanwhile,
nodes that participate in training are rewarded with PoT cryptocurrency
based on their computational contributions.

Keywords: Trustworthy ML · Delegated ML · Blockchain networks ·
Consensus mechanism.

1 Introduction

In recent years, machine learning (ML) and cryptocurrencies have entered the
mainstream spotlight. Both have shown immense potential to transform indus-
tries, yet they also face growing criticism for their environmental impact [19,27].
While the computational resources required for ML model training are often
justified by the functionality and value they deliver, the same cannot be said
for blockchain networks. Consensus mechanisms such as Bitcoin’s Proof of Work
(PoW) [29] rely on solving cryptographic puzzles, where significant energy con-
sumption serves no purpose beyond guaranteeing the immutability of the trans-
action ledger, making the process highly wasteful.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

2 Ł. Krzywiecki, G. Wechta

However, recent research suggests that the long-term sustainability of cryp-
tocurrencies must rely on consensus frameworks that preserve computational
effort rather than eliminating it altogether [12,35,36]. Therefore, we argue that
the solution to blockchain inefficiency is not to remove complex computation
but to design a consensus mechanism that harnesses global computing power for
a tangible, desirable and practical purpose while also remaining profitable for
participants [3,16,21].

One of the key challenges in ML model creation is the significant compu-
tational power required for training models. Lately, even moderately complex
models often demand more resources than most organizations can provide. As
a result, many organizations must shift to Cloud Computing Services (CCS)
such as Google Cloud Platform, Amazon AWS, or Microsoft Azure which pro-
vide significant computing resources often dedicated to ML training under some
fees. However, in general, CCSs do not offer any provable guarantees that user-
provided models have been trained honestly, that is without any malicious mod-
ifications to architecture or dataset, that includes data mislabeling, injections,
dropping, etc.

1.1 Our Contribution

In this work, we introduce a novel consensus mechanism, Proof of Training
(PoT), aimed at making cloud-like ML training verifiable and reducing waste-
ful computation. Unlike existing usability-focused consensus mechanisms, PoT
emphasizes real-world functionality and leverages other established and trusted
consensus mechanisms. We accomplish those goals through distributed protocol
during which nodes independently create proofs that they performed training,
while simultaneously verifying that their results align with those of other partic-
ipating nodes. Each confirmation is recorded on the public blockchain, enabling
client and third-party verification of the training process. Once a specified num-
ber of confirmations is reached, nodes proceed to the next round, which could
be a different stage of the previous model or a completely fresh model. Conse-
quently, PoT can be viewed as a secure multi-party computation alternative for
ML as a Service and CCS platform providers.

Notably, PoT can facilitate model training from the beginning or verify
the correctness of externally trained model, additionaly PoT in the context of
blockchain networks ia a comprehensive consensus mechanism, allowing it to be
substitute for any existing consensus mechanism in various blockchain networks.

In Section 2 we present ML assumptions and formal notation that allows us
to define adn formalize malicious ML training. Section 3 is devoted to the PoT.
We begin by highlighting the key aspect of PoT’s design, that forces each par-
ticipant to perform training by itself. Later we move to the design and protocol
description. We also discuss each step and explain its impact on the the secuirty
of the training.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 3

1.2 Related Work

Attacks on ML training. Data poisoning within the context of SVMs has
been extensively examined in several studies [1,5,10]. Additionally, the authors
of [28] investigated contaminated training data, shedding light on how such data
can benefit attackers. Subsequent research delved into various other applica-
tions of data poisoning, including malware detection [14], sentiment analysis
[13], collaborative filtering [6], and attacks on spam filters [11]. In [8], the au-
thors proposed a general optimization framework for offline poisoning attacks,
while another study [33] experimented with undermining license plate recogni-
tion models. Furthermore, [9] provided a comprehensive review of recent attacks
and defenses spanning different data modalities. Lastly, the authors of [18] cat-
egorized a wide array of vulnerabilities associated with datasets in their study.

Consensus mechanisms. Nakamoto in his seminal work [29] proposed
Proof of Work, the first well-adopted consensus mechanism for permissionless
blockchain networks. In response to the recognized limitations of PoW, the au-
thors of [22] introduced a consensus mechanism mitigating wasteful computation
called Proof of Stake (PoS). Building upon advancements of PoS, the authors
of [4] presented a mechanism called Proof of Activity (PoA) incentivizing nodes
to remain online. This is in contrast to PoS where nodes tend to go idle over
time. For a comprehensive overview of blockchain technology, particularly fo-
cusing on consensus mechanisms, refer to [3,35]. Latest attempts in shifting the
attention of blockchain network creators towards useful computation resulted in
new cryptocurrencies such as Primecoin [21] and in general frameworks [3,16].

Similar to this work. To our knowledge, only a handful of approaches use
AI/ML training as a consensus mechanism foundation: Proof of Learning (PoL)
[20,26] and Li’s Proof of Training (PoT) [24]. PoL makes nodes compete to cre-
ate the most effective model for a task and independently determine accuracy
and parameters. However, PoL neglects key aspects of permissionless blockchain
networks, including transaction time realization (heavily dependent on model
architecture) and blockchain data storage (requirements escalate rapidly). Re-
cent work [15] weakens PoL’s integrity by presenting a spoofing attack. Li’s
PoT similarly incorporates competition to improve model quality by rewarding
better-performing nodes. However, it gives nodes client-specified time limits for
training, causing unpredictable block publication times. Furthermore, it assumes
a complicated network architecture, unrealistic in decentralized blockchain net-
works.

Other works explore blockchain and trustworthy ML training intersection.
Navarro et al. [30] proposed methods for trustworthy neural network training via
blockchain. Lihu et al. [25] introduced a proof of useful work for AI on blockchain.
Our PoT differs through stronger focus on adversarial training integrity and
its verification mechanism designed to ensure training integrity. The concept
of verifying ML training via partial re-execution has been explored previously,
though often outside blockchain contexts. For instance, VerDE [2] employs a
similar strategy where trainers share intermediate checkpoints and verifiers re-
execute training segments with the largest weight changes.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

4 Ł. Krzywiecki, G. Wechta

2 Malicious ML Training

Our discussion adopts a higher-level perspective, abstracting the ML training
process from its specific implementation, thus allowing us to generalize our dis-
course across various types of models, with the only caveat being that a model
use gradient-based learning methodologies. Other types of models may also be
used with the PoT after defining an appropriate way of calculating a training
secret (see Section 3). However, in this work, we limit our discussion to models
utilizing gradient-based learning.

We use the notation x $← X to indicate that an element x is sampled
uniformly at random from the set X. We use k, n, t to denote numbers from
N+. We denote a sequence (x1, x2, . . . , xt) as (xi)

t
1 or simply as x(t). Let I =

{i1, . . . , ik} ⊂ {1, . . . , n} denote indices. We use AI to denote subset of A, which
elements are in I, that is AI = {ai1 , . . . , aik} ⊂ A = {a1, . . . , an}.

Clean Samples. Let X , Y denote the set of input and output data, re-
spectively. A process of training a parameterized function fS : X → Y (e.g., a
neural network) involves updating its parameters S (weights and biases) while
minimizing the loss function L. L measures the difference between the output
of the model and the desired output for a given input. Given a set of n samples
D = {(x, y)} ⊂ X ×Y, where X represents the input data and Y the correspond-
ing set of labels (e.g., for the classification problem, X represents input vectors
and Y the corresponding set of categories). Let M ⊂ D denote the training
dataset, and D\M denote a test set. The objective is to set the optimal param-
eters S such that for all fresh samples (x, y) ∈ D\M predicted values y ← fS(x)
have the lowest possible error in terms of L.

Malicious samples. Let X̂ denote the set of input data corresponding to
incorrect output data Ŷ. Let D̂ = {(x̂, ŷ)} ⊂ X̂ × Ŷ denote the set of samples,
where (x̂, ŷ) is a pair of incorrect data. Let M̂ ⊂ D̂ denote the malicious samples
used during the malicious training process. Thus D̂ \M̂ will be used to evaluate
the malicious accuracy.

Regular training. Gradient descent-based training [31] is an iterative pro-
cess of adjusting weights and biases of a model in the direction of the steepest
descent of the loss function gradient g ← 1

b∇Si

∑
(x,y)∈Bi

L(fSi
(x), y). Here, we

consider a regular training (RT) with parameters (D,M, f, S0, L, (ξi)
t
1), where:

M ⊂ D denotes the training samples, f denotes a chosen architecture of the
model, S0 denotes the initial parameters of the model, L is a loss function,
and (ξi)

t
1 denotes the randomness used. The process iteratively updates Si+1 ←

Si − η · g, with learning rate η, sampling (x, y) from batches Bi ⊂ M of size b
(i.e. |Bi| = b).

We denote St ← RT(fS0 , (Bi)t1, (ξi)t1), or St ← fS0(B(t)) to indicate that
the model parameters St are obtained by applying the training sequence of t
batches (Bi)t1 = B(t), using randomness (ξi)

t
1 = ξ(t) for all indices i ∈ I =

{1, . . . , t}, to the model architecture f with the initial parameters S0. Moreover
let Si ← f(Si−1,Bi, ξi) denote a single loop in RT, i.e. processing a single ith
batch, where ξi denotes all randomness used in ith loop.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 5

Malicious training. Let Î = {i1, . . . ik} ⊂ {1, . . . , t} = I. (k, t)-malicious
training involves the same process as RT, except that the k batches B̂i are
taken from malicious samples M̂ for some indices Î. Thus we denote B̂(k,t)

Î
=

B(t)\BÎ∪B̂Î to indicate that some k out of t clean batches Bi ∈ B(t) were replaced
with B̂j for j ∈ Î. We denote Ŝt ← RT(fS∗

0
, B̂(k,t)

Î
, (ξi)

t
1), or Ŝt ← fS∗

0
(B̂(k,t), ξ(t))

to indicate that Ŝt is obtained from initial state S∗
0 using the training sequence

B̂(k,t) with k malicious batches and the randomness sequence ξ(t).
Advantage of malicious training. Let St ← fS0

(B(t), ξ(t)) and Ŝt ←
fS∗

0
(B̂(k,t), ξ(t)) denote clean and malicious training, respectively. Accordingly,

let (x, y) $← D \M and (x̂, ŷ) $← D̂ \ M̂ denote sampling clean and malicious
data, respectively.

Definition 1 ((α, β)-advantage of Malicious Training). We say Malicious
Training has (α, β)-advantage for:

α =
∣∣∣Pr[y ← St(x)]− Pr[y ← Ŝ(x)]

∣∣∣,
β = Pr[ŷ ← Ŝt(x̂)].

The (α, β)-advantage is deemed successful when α is small and β is sufficiently
large. We say that k malicious batches B̂Î are injected into the training process
(instead of clean samples BÎ) to achieve β accuracy on malicious data. From the
adversary’s perspective, achieving (α, β)-advantage implies that the selection of
B̂Î and k yields satisfactory accuracy β on malicious data for the resulting model
Ŝt, simultaneously the resulting model remains α-close to the regular accuracy
of St trained on clean data.

2.1 Distributed Deterministic Training and Verification

A potential countermeasure against malicious injections involves ensuring that
the RT process is deterministically verifiable. Assume we have regular RT train-
ing sequence St ← RT(fS0

, (Bi)t1, (ξi)t1), which is a series of steps

S1 ← f(S0,B1, ξ1), . . . , St ← f(St−1,Bt, ξt).

We can record all the parameters S0, . . . , St, batches B(t) and randomness ξ(t).
This preservation enables us to recreate the entire RT process later and verify
whether the resulting model matches the one obtained during the initial training.

Distributed verifiable RT. Recreating the recorded RT process is indeed
as complex as the initial training, requiring the repetition of all its steps over
the recorded intermediate values S0, S(t), B(t), ξ(t).

2.2 Distributed Deterministic Training Requirements

Here we define assumptions about the training process that are essential for PoT:

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

6 Ł. Krzywiecki, G. Wechta

– Sequential : Training of the model from the beginning to the end can be split
into stages where each stage depends on the outcome of the preceding stage.

– Deterministic: The operation Si ← f(Si−1,Bi, ξi), for the same inputs, will
always produce the same result. This in practice enforce usage of the same
parameters during training e.g., the same seed, framework version etc.

– Reproducible: When the pseudorandom number generator used to obtain ξ
is initialized with the same seed, it produces the same ξ(t) values. Due to
this and the deterministic assumption, the training process can be replicated
on different devices ensuring that the output St ← RT(fS0

, (Bi)t1, (ξi)t1) will
remain the same.

– Computationally expensive: Computing f(Si−1,Bi, ξi) is not trivial. This in-
formal statement aims to limit possible f functions to practical training
problems.

– Well-defined : f is commonly accepted and widely represented in ML libraries.

From now we are discussing only deterministic training, with randomness ξ de-
terministically reproduced on all involved nodes, we skip ξ in our notation. Thus,
f(Si−1,Bi) denotes f(Si−1,Bi, ξi).

3 Proof of Training

Broadly speaking, the Proof of Training consensus mechanism allows unam-
biguous training verification, by constructing a solution to a consensus puzzle
alongside recreating the recorded RT.

Training secret. The core building block of PoT is the capability to prove
that a node indeed performed training from Si to state Si+1. This has to be
achieved using a value that can be learned only during the training process. In
the text, we call that value the training secret of stage Si, and in equations,
we denote it using ρi. Note that all functions depending only on Si+1 will not
work (for example H(Si+1), where H is a cryptographic hash function) and
the training process has to be somehow entangled, since Si+1 has to be publicly
available for the protocol to work. Now we explain how such value can be derived.

When a batch Bi of size b is fed to the model, the training process iterates over
inputs and makes predictions. Let ỹj be a prediction for input xj . ỹj is compared
to the expected output label yj and an error lj = L(yj , ỹj) is calculated. At the
end of the batch, all samples’ errors are accumulated

gi =
1

b

∑
1≤j≤b

L(yj , ỹj).

Based on this accumulated error and learning rate ηi, the update algorithm is
used to improve the model’s weights w using

w ← w − ηigi.

Intermediate errors lj are forgotten after accumulation. When b > 1, retrieving
these errors becomes infeasible, even with access to gi, B, and both the old and

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 7

new values of w are available. ljs are essential for constructing the training secret,
they must be treated as secrets. Consequently, PoT requires a batch size of at
least two.

Fig. 1. Graphical representation of the process of incorporating the training secret
creation into the basic training iteration.

Training secret is calculated in parallel to the training loop (see Figure 1) by
hashing the concatenation of current lj with the hash of the predecessor. This
can be expressed by the following equation

ρi = H(lb ∥ H(lb−1 ∥ . . .H(l2 ∥ H(l1)) . . .)). (1)

If ρSi+1
is derived during calculating f(Si,Bi+1), we denote that as

Si+1 ←−−−−
ρSi+1

f(Si,Bi+1).

Training as sequential steps. Training a single ML model can take any-
where from a few seconds to several days. Since it is crucial to ensure that leader
election time remains predictable and depends on the resources a node possesses
[35] clearly, a single training process cannot serve as the backbone of a consensus
mechanism without modifications.

To solve this problem a PoT user, henceforth called an employer, before
submitting a training request to the network, is responsible for dividing the
training process into sequential steps, with the single-step size being constructed
based on functions τ and ∆.

The function τ estimates the total computational effort required to train the
entire model on dataset D. One, popular way of doing this relies on analyzing
the number of multiply-and-add operations based on the model architecture.
Importantly, that metric does not depend on the underlying hardware, resulting
in a fair metric for all nodes, irrelevant of the hardware they possess. We utilize
the explicit formula provided in [32] as τ .

The function ∆, on the other hand, partitions the dataset into a set D =
{B1,B2, . . . ,Bt}, where each Bi represents a separately downloadable batch of
training data. ∆ takes two inputs: τ(A,D), and the number of blocks published
in the last 24 hours, similar to how Bitcoin’s self-adjusting difficulty function
operates (see equation (1) of [34]). Both inputs are used to ensure that the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

8 Ł. Krzywiecki, G. Wechta

expected time for a single training step, Si+1 ← f(Si,Bi+1), remains roughly
constant, aligning with the protocol-defined time interval T . It is important to
note that such a design does not restrict the model owner’s decision-making
regarding the number of epochs and the batch size (except the aforementioned
b > 1). This approach also solves the issue of scaling over time with increasingly
large datasets and more complex models. In the case of a large computational
load, the dataset would be divided into more batches, effectively resulting in
more stages.

Employer’s preparation. The employer is responsible for establishing a
publicly accessible pull-push repository containing the model architecture A,
partitioned dataset D, a seed for deriving ξ(t), and C the number of confirma-
tion votes that employer wishes to receive, all secured with a digital signature.
Nodes, after downloading these resources, must verify their authenticity. Addi-
tionally, the employer must deposit the fee for node participation into a des-
ignated address that is non-retrievable by the employer, but which balance is
publically accessible. This fee will later be partially distributed as rewards to
nodes that successfully participate in the training process. Note that, although
there is no strict authentication mechanism, as this is a permissionless blockchain
network, what truly legitimizes the employer is the commitment of coins to the
non-retrievable address. The employer then announces their intent to engage the
network by broadcasting a message called a training request, which includes all
necessary data.

3.1 PoT Design

Finally, we present the Proof of Training consensus mechanism. PoT is divided
into two phases, namely:

– Verifiable training : The first phase is responsible for training the model and
creating a training declaration message.

– Block building : The second phase is responsible for electing a leader based
on block header and creating the final wrapped block that will be appended
to the blockchain.

Both phases at the end utilize the PoS mechanism [22], while the second also uti-
lizes the PoA mechanism [4]. Functions Dtd

PoS and Dbh
PoS are difficulty functions

for PoS mechanisms presented below in Algorithm 1 and Algorithm 2, respec-
tively. The workflow of the PoT consensus mechanism is depicted in Figure 2.

Verifiable training phase (Algorithm 1). Steps 1, 2 — nodes independently
select stages that meet their preferences. This part depends solely on the strategy
of PoT’s client implementation. Notably, a node may prefer to participate in the
whole training process for some M even though it is not the most profitable
strategy at the time to, for example, avoid download bottlenecks. Step 3 — by
performing f(Si,Bi+1) node acquires training secret ρSi+1

. Step 4 — training
declaration contains:

– IDtd: Unique identifier of the training declaration.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 9

Algorithm 1 Verifiable training
1: Every node independently selects stage Si of model M to train, based on overheard

training requests and its own preferences.
2: Every node downloads the selected stage Si and batch Bi+1.
3: Every node performs Si+1 ←−−−−

ρSi+1

f(Si,Bi+1) and saves ρSi+1 .

4: Node creates training declaration message, where rand is a random 256-bit string.

training declaration := {IDtd, IDM , IDSi+1 ,H(Si+1), timestamp,
H(ρSi+1 ∥ rand), rand, coinstake, pub_key}

5: (PoS) Node calculates htd = H(training declaration). If htd ≤ Dtd
PoS(coinstake) is

true, it calculates σtd = Signpriv_key(training declaration), appends it to the message
and publishes it, otherwise it increments timestamp and starts again.

– IDM , IDSi+1
: Used for model and training stage identification. To reduce

message size, a condensed identifier ID{M,Si+1} can be employed (as we do
in our implementation, refer to Section 3.1).

– H(Si+1): Allows nodes to verify if Si+1 held by them is equal to parameters
held by the training declaration creator.

– timestamp: Used for PoS mechanism.
– H(ρSi+1

∥rand): Known as secret commitment. It serves as a zero-knowledge
proof of knowing ρSi+1 . Note that ρSi+1 is not included in the message.
Also, H(ρSi+1 ∥ rand) reveals no information about ρSi+1 . At this point in
the protocol, the only way to verify secret commitment is to derive ρSi+1

individually by appending the included rand to ρSi+1
and hashing them.

ρSi+1
will be revealed in Step 2 of Algorithm 2, after which everyone can

verify the secret commitment.
– coinstake: The abbreviation for the coinstake transaction. The idea is bor-

rowed from [22]. This value represents the cumulative age of all coins involved
in the coinstake transaction. Coin age determines the difficulty of Dtd

PoS .
When a block is published, the age of all coins in the coinstake transaction
resets to zero and are back in the possession of the issuer.

– pub_key: Public key corresponding to private key priv_key used in the
signature. Allows verification of σtd.

Step 5 — this step provides resilience against Sybil attacks [35] in the same
manner as PoS achieves that. Also, PoS makes shared secret attacks, in which
nodes silently cooperate and only one of them performs computation and shares
results with others, infeasible. After publishing training declaration, a node can
decide whether he wants to go back to Step 1 or continue to the next phase. If
a node, during the PoS waiting mechanism, receives a block based on the stage
that he is currently working on, he was late; he should dump the current state
and start over.

Block building phase (Algorithm 2). Step 1 — C is the number of train-
ing declarations chosen by an employer and fixed for M . Note that the node

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

10 Ł. Krzywiecki, G. Wechta

Employer

Block N-2

PoT Blockchain

Current Block
Hash

Parent Block
Hash

Transactions

...

Block N-1

Current Block
Hash

Parent Block
Hash

Transactions

Block N

Current Block
Hash

Parent Block
Hash

Transactions

Fig. 2. Typical workflow of PoT consensus mechanism. An employer (right-hand size)
publishes architecture A and dataset D. Using ∆, D is divided into {B1,B2, . . . ,Bt}.
Participating node selects stage i, downloads (Si,Bi+1), performs Si+1 ← f(Si,Bi+1)
and creates training declaration. A gear in the node indicates that a node is currently
performing training. After a sufficient number of training declarations is published,
one of the nodes creates block header, which leads to the creation of wrapped block and
(left-hand size) effectively a new block. The elected leader (denoted by a checkmark)
broadcasts a new block and uploads a new resulting state to the employer.

has to know ρSi+1
to perform this step. Fields IDbh, IDM , IDSi+1

, timestamp,
coinstake, pub_key have the same purpose as in a training declaration.

– parent_block_hash, block_index: The block header serves as a vessel for
the wrapped block, containing mandatory blockchain block fields.

– ρSi+1 : The node publishes the training secret so that others, who did not
compute it, can verify the correctness of training declarations. Note that
a lazy node cannot intercept ρSi+1

and immediately broadcast their own
training declaration or block header since they have to wait in Step 5 of
Algorithm 1 or Step 2 of Algorithm 2.

– [IDtd1 , IDtd2 , . . . , IDtdC
]: Each training declaration serves as an independent

vote, confirming that the training of the model indeed yields that result.
Note that in order to save space, only indices of training declarations are
sent. If a node does not have access to them, it should request them from
some nearby node, similar to the original idea for sharing transactions’ data
in [29].

Step 2 — serves the same purpose as Step 5 in Algorithm 1. Step 3 — node
uploads Si+1 (i.e., weights, biases) to the employer. The employer’s repository
should provide a means for resolving the rare situation in which more than one
node will upload Si+1 simultaneously. Note that the employer does not have to
store every Si+1 and may choose to only keep the latest one. Steps denoted with
an asterisk (*) are meant to be triggered by the event of receiving a block header
for any M , and to be performed outside of normal Algorithm 1 or Algorithm 2

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 11

Algorithm 2 Block building
1: Node after receiving C training declarations for the Si+1 of M verifies that all meet

Dtd
PoS(coinstake), have correct signatures, and checks their secret commitments

against his own training secret. If sound, the node creates block header, where
[IDtd1 , IDtd2 , . . . , IDtdC] is a list of training declarations identifiers.

block header := {IDbh, IDM , IDSi+1 ,parent_block_hash, block_index,
timestamp, ρSi+1 , coinstake,pub_key, [IDtd1 , IDtd2 , . . . , IDtdC]}

2: (PoS) Node calculates hbh = H(block header). If hbh ≤ Dbh
PoS(coinstake) is true

it calculates σbh = Sign(block header), appends it to the message and publishes it,
otherwise it increments timestamp and starts again.

3: Node uploads Si+1 to the employer.
4: * (PoA) Every node verifies C training declaration against ρSi+1 included in block

header. If valid, node acquires K stakeholders by passing H(block header) to follow-
the-coin.

5: * Every online node checks whether it is one of K stakeholders. First K − 1 stake-
holders sign the hash of the block header and broadcast their signatures. Kth stake-
holder extends the block header by creating a wrapped block, where [Tx1, Tx2 . . . Txt]
is a list of network transactions and [σ1, σ2 . . . σK−1] is a list of K − 1 stakeholders
signatures. Kth stakeholder signs and broadcasts.

wrapped block := {IDbh, Txcoinbase,[Tx1, Tx2, . . . , Txt], [σ1, σ2, . . . , σK−1]}

6: * Every node after receiving wrapped block, checks stakeholder signatures and
H(Si+1) against training declarations and if sound updates his local replica of
the blockchain. Process for Si is considered finished.

workflows. Steps 4, 5 — typical last PoA steps, tailored for PoT. Step 6 — the
wrapped block created in Step 5 is appended to the blockchain, thus the global
view of the blockchain is updated.

Discussion and security. The main difficulty of providing the service of
multi-party verifiable ML model training was assuring that some number of
independent nodes would truly train the model without cheating, for example
by stating random results, replaying others’ messages, or by Sybil attacks.

We argue that introducing training declaration message as an additional com-
munication round to a typical consensus mechanism serves as a solution. This
communication overhead is justified by the fact that every training declaration
can be viewed as an independent vote stating “I, pub_key, have trained the model
M using batch Bi+1 from stage Si to stage Si+1, I know the training secret and
I present H(ρSi+1 ∥rand) as the proof of that.” The more votes Si has, the more
confident the employer can be that the result is correct, hence, the number of
votes C is also a parameter of the protocol and the decision about this value
belongs to the employer. Correctness of training declaration can be verified by
every node that has already performed Si+1 ←−−−−

ρSi+1

f(Si,Bi+1), and later, after

the block is appended to the blockchain, by anyone, because ρSi+1
is revealed in

the block header.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

12 Ł. Krzywiecki, G. Wechta

Replay and Sybil attacks are prevented by the fact that every training dec-
laration is sealed by the PoS mechanism. Additionally, since PoS checks are
performed periodically, the process can run in the background, hence a node
does not have to stay idle and can continue to train the next stage or move to
another model. Note that forcing the network to append a block with an incor-
rect training secret, so as to perform data injection or just lazily participate in
the protocol, is equivalent to performing a 51% attack.

After C training declarations are broadcasted to the network, any of the
nodes that have already trained the model can start the block building phase.
Note that since block building ends in PoA, there is no race between nodes to
build the block header [4].

Another thing worth mentioning is that after C training declarations for
stage Si+1 are broadcasted, it does not force the nodes to abandon a prepared
training declaration which is waiting to meet Dtd

PoS(coinstake) or quit training
altogether. During PoS in the block building phase, nodes can actually increase
their chances by taking C-length permutations of the total number of training
declarations that they have heard. Therefore, the network will continue to per-
form the block building phase until Step 6 is performed by one of the nodes. Such
design exponentially increases the probability of meeting Dbh

PoS(coinstake) in
Step 2 and thus accelerates finalizing it. At this point in the protocol, the list
of C training declarations can be thought of as PoW’s nonce but from a very
limited space [29]. This unfortunately opens up the possibility of producing more
than one set of stakeholders for given Si+1 and M which may result in blockchain
forks. Whether the advantages of this functionality outweigh its disadvantages
will be determined in future work.

It is important to emphasize that a selfish node after receiving C training
declarations in Step 2 may opt to delay and attempt to secure a more favorable
set of stakeholders. This attack is mitigated by the aforementioned “permutation
speed-up” that accelerates after every new training declaration gets published,
making a selfish strategy extremely risky. Furthermore, if a node aims just to be
selected as a Kth stakeholder, this does not provide much profit because PoT
incentive design (due to space constraints, incentive design details cannot be
included) keeps transaction fees at a low level.

Additionally, PoW’s minting and verification times asymmetry (difficult to
find, fast to verify) is also present in PoT. The block building phase is a time-
consuming and depends on parameterized functions ∆, Dtd

PoS and Dbh
PoS and

through them is scaled to meet the expected time T . On the other hand, the
block verification method consists of checking C training declarations against
ρSi+1

and checking K signatures against H(block header), thus block verification
is a simple process that can be done in constant time.

Absence of the employer. Model training requests are naturally queued,
with priority determined by the reward offered by the employer. However, there
may be periods when no active training requests are available. To address this,
the network includes a dummy model architecture and dataset, whose sole pur-
pose is to provide a minimal framework for nodes to continue participating in the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 13

protocol and continue handling incoming transactions. In this case, the reposi-
tory is provided by the organization responsible for maintaining the core imple-
mentation of PoT, and no rewards are offered for training the dummy model.
Nodes’ incentive during this period is limited to coinbase rewards and trans-
action fees. It is important to note that this situation should naturally resolve
itself, as the cost of using the PoT network would decrease in the absence of
active training requests.

Hiding the dataset. A critical issue with the PoT protocol is the require-
ment for employers to make their datasets and architectures publicly available.
This imposes a significant barrier, particularly for private enterprises, as it may
lead them to refuse to use PoT altogether. Despite this, the core argument of
PoT, which asserts the correctness of model training backed by independent
votes, necessitates that nodes access the dataset. One potential solution is the
utilization of fully homomorphic encryption [7,23], although current high exe-
cution times render this approach impractical. Alternatively, employing zero-
knowledge systems such as those proposed in [17] could potentially replace the
proposed way of computing the training secret as in Equation (1). Nonetheless,
it is worth noting that open-access datasets still constitute a significant por-
tion of the datasets in use, especially among independent researchers and small
to medium-sized companies, which are the primary target users of PoT services.
Furthermore, it is common practice, even in large-budget projects, to begin train-
ing models on public datasets and later fine-tune them on private datasets. In
such cases, the public portion of the training can be performed using the PoT.

Implementation. To show the feasibility of PoT we implemented a PoC im-
plementation available at https://github.com/gwechta/proof-of-training.

4 Conclusion

In this paper, we introduced a novel approach for verifiable ML training in
cloud-like environments by harnessing the consensus mechanism of a blockchain
network. Our protocol leverages the intrinsic features of blockchain networks,
thereby transforming the drawback of wasteful puzzle-solving into a PoT con-
sensus mechanism, serving as a genuine alternative to PoW. We emphasize that
our protocol can be run with almost any model and dataset, imposing only min-
imal restrictions. By distributing the verification process across the blockchain
infrastructure, our approach ensures the utilization of dedicated nodes and en-
ables training functionality with ample computational resources. Furthermore,
we outlined a threat model and formalized malicious data manipulation attacks
on ML models taking into account different forms of attacks as well as we have
defined formal notion of describing adversary’s advantage, for which our protocol
serves as a solution.

References

1. Alfeld, S., Zhu, X., Barford, P.: Data poisoning attacks against autoregressive
models. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://github.com/gwechta/proof-of-training
https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

14 Ł. Krzywiecki, G. Wechta

(2016)
2. Arun, A., Arnaud, A.S., Titov, A., Wilcox, B., Kolobaric, V., Brinkmann, M.,

Ersoy, O., Fielding, B., Bonneau, J.: Verde: Verification via refereed delegation
for machine learning programs (2025). https://doi.org/10.48550/ARXIV.2502.
19405, https://arxiv.org/abs/2502.19405

3. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work (2017),
https://eprint.iacr.org/2017/203

4. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: Extending bit-
coin’s proof of work via proof of stake (2014), https://eprint.iacr.org/2014/452

5. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector ma-
chines. arXiv preprint arXiv:1206.6389 (2012)

6. Borrelli, F., Bemporad, A., Morari, M.: Predictive control for linear and hybrid
systems. Cambridge University Press (2017)

7. Brand, M., Pradel, G.: Practical privacy-preserving machine learning using fully
homomorphic encryption. Cryptology ePrint Archive, Paper 2023/1320 (2023),
https://eprint.iacr.org/2023/1320, https://eprint.iacr.org/2023/1320

8. Chen, Y., Zhu, X.: Optimal attack against autoregressive models by manipulating
the environment. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34, pp. 3545–3552 (2020)

9. Cina, A.E., Grosse, K., Demontis, A., Vascon, S., Zellinger, W., Moser, B.A.,
Oprea, A., Biggio, B., Pelillo, M., Roli, F.: Wild patterns reloaded: A survey of ma-
chine learning security against training data poisoning. ACM Computing Surveys
55(13s), 1–39 (2023)

10. Cohen, A., Hasidim, A., Koren, T., Lazic, N., Mansour, Y., Talwar, K.: Online
linear quadratic control. In: International Conference on Machine Learning. pp.
1029–1038. PMLR (2018)

11. Dean, S., Mania, H., Matni, N., Recht, B., Tu, S.: On the sample complexity of the
linear quadratic regulator. Foundations of Computational Mathematics pp. 1–47
(2019)

12. Dotan, M., Tochner, S.: Proofs of useless work – positive and negative results for
wasteless mining systems (2020), https://arxiv.org/abs/2007.01046

13. Dua, D., Graff, C., et al.: Uci machine learning repository (2017)
14. Dunning, I., Huchette, J., Lubin, M.: Jump: A modeling language for mathematical

optimization. SIAM review 59(2), 295–320 (2017)
15. Fang, C., Jia, H., Thudi, A., Yaghini, M., Choquette-Choo, C.A., Dullerud, N.,

Chandrasekaran, V., Papernot, N.: Proof-of-learning is currently more broken than
you think (2022). https://doi.org/10.48550/ARXIV.2208.03567

16. Fitzi, M., Kiayias, A., Panagiotakos, G., Russell, A.: Ofelimos: Combinatorial op-
timization via proof-of-useful-work a provably secure blockchain protocol (2021),
https://eprint.iacr.org/2021/1379

17. Garg, S., Goel, A., Jha, S., Mahloujifar, S., Mahmoody, M., Policharla, G.V.,
Wang, M.: Experimenting with zero-knowledge proofs of training. Cryptology
ePrint Archive, Paper 2023/1345 (2023), https://eprint.iacr.org/2023/1345,
https://eprint.iacr.org/2023/1345

18. Goldblum, M., Tsipras, D., Xie, C., Chen, X., Schwarzschild, A., Song, D., Madry,
A., Li, B., Goldstein, T.: Dataset security for machine learning: Data poisoning,
backdoor attacks, and defenses. IEEE Trans. Pattern Anal. Mach. Intell. 45(2),
1563–1580 (2023). https://doi.org/10.1109/TPAMI.2022.3162397

19. Gschossmann, I., van der Kraaij, A., Benoit, P.L., Rocher, E.: Min-
ing the environment – is climate risk priced into crypto-assets? (202),

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://doi.org/10.48550/ARXIV.2502.19405
https://doi.org/10.48550/ARXIV.2502.19405
https://doi.org/10.48550/ARXIV.2502.19405
https://doi.org/10.48550/ARXIV.2502.19405
https://arxiv.org/abs/2502.19405
https://eprint.iacr.org/2017/203
https://eprint.iacr.org/2014/452
https://eprint.iacr.org/2023/1320
https://eprint.iacr.org/2023/1320
https://arxiv.org/abs/2007.01046
https://doi.org/10.48550/ARXIV.2208.03567
https://doi.org/10.48550/ARXIV.2208.03567
https://eprint.iacr.org/2021/1379
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://doi.org/10.1109/TPAMI.2022.3162397
https://doi.org/10.1109/TPAMI.2022.3162397
https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

Proof of Training 15

https://www.ecb.europa.eu/press/financial-stability-publications/
macroprudential-bulletin/html/ecb.mpbu202207_3~d9614ea8e6.en.html

20. Jia, H., Yaghini, M., Choquette-Choo, C.A., Dullerud, N., Thudi, A., Chan-
drasekaran, V., Papernot, N.: Proof-of-learning: Definitions and practice (2021),
https://arxiv.org/abs/2103.05633

21. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work. https:
//primecoin.io/bin/primecoin-paper.pdf (2013)

22. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-
Published Paper (2012)

23. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee,
J., Yoo, D., Kim, Y.S., No, J.S.: Privacy-preserving machine learning with fully
homomorphic encryption for deep neural network (2021), https://arxiv.org/
abs/2106.07229

24. Li, P.: Proof of training (pot): Harnessing crypto mining power for distributed ai
training (2023), https://arxiv.org/abs/2307.07066

25. Lihu, A., Du, J., Barjaktarevic, I., Gerzanics, P., Harvilla, M.: A proof of useful
work for artificial intelligence on the blockchain (2020), https://arxiv.org/abs/
2001.09244

26. Liu, Y., Lan, Y., Li, B., Miao, C., Tian, Z.: Proof of learning (pole): Empower-
ing neural network training with consensus building on blockchains. Computer
Networks 201, 108594 (2021). https://doi.org/https://doi.org/10.1016/j.
comnet.2021.108594

27. Luccioni, A.S., Jernite, Y., Strubell, E.: Power hungry processing: Watts driving
the cost of ai deployment? (2023), https://arxiv.org/abs/2311.16863

28. Mei, S., Zhu, X.: Using machine teaching to identify optimal training-set attacks on
machine learners. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 29 (2015)

29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

30. Navarro, E., Standing, K.J., Dagher, G.G., Andersen, T.: Ensuring trustworthy
neural network training via blockchain. In: 2023 IEEE 5th International Conference
on Cognitive Machine Intelligence (CogMI). pp. 31–40 (2023). https://doi.org/
10.1109/CogMI58952.2023.00015

31. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems: Fun-
damentals Through Simulations. Wiley John + Sons, 1 edn. (December 7 1999)

32. Sevilla, J., Heim, L., Hobbhahn, M., Besiroglu, T., Ho, A., Villalobos, P.: Esti-
mating training compute of deep learning models (2022), https://epochai.org/
blog/estimating-training-compute, accessed: 2024-10-08

33. Song, C., Yi, Y., Zhou, T., Yang, J., Liu, L.: Undermining license plate recognition:
A data poisoning attack pp. 72–78 (2023)

34. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: A technical survey on de-
centralized digital currencies. IEEE Communications Surveys & Tutorials 18(3),
2084–2123 (2016). https://doi.org/10.1109/comst.2016.2535718

35. Wang, W., Hoang, D.T., Hu, P., Xiong, Z., Niyato, D., Wang, P., Wen, Y., Kim,
D.I.: A survey on consensus mechanisms and mining strategy management in
blockchain networks. IEEE Access 7, 22328–22370 (2019). https://doi.org/10.
1109/ACCESS.2019.2896108

36. Álvarez, I.A., Gramlich, V., Sedlmeir, J.: Unsealing the secrets of blockchain con-
sensus: A systematic comparison of the formal security of proof-of-work and proof-
of-stake (2024), https://arxiv.org/abs/2401.14527

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_15

https://www.ecb.europa.eu/press/financial-stability-publications/macroprudential-bulletin/html/ecb.mpbu202207_3~d9614ea8e6.en.html
https://www.ecb.europa.eu/press/financial-stability-publications/macroprudential-bulletin/html/ecb.mpbu202207_3~d9614ea8e6.en.html
https://arxiv.org/abs/2103.05633
https://primecoin.io/bin/primecoin-paper.pdf
https://primecoin.io/bin/primecoin-paper.pdf
https://arxiv.org/abs/2106.07229
https://arxiv.org/abs/2106.07229
https://arxiv.org/abs/2307.07066
https://arxiv.org/abs/2001.09244
https://arxiv.org/abs/2001.09244
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108594
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108594
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108594
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108594
https://arxiv.org/abs/2311.16863
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CogMI58952.2023.00015
https://doi.org/10.1109/CogMI58952.2023.00015
https://doi.org/10.1109/CogMI58952.2023.00015
https://doi.org/10.1109/CogMI58952.2023.00015
https://epochai.org/blog/estimating-training-compute
https://epochai.org/blog/estimating-training-compute
https://doi.org/10.1109/comst.2016.2535718
https://doi.org/10.1109/comst.2016.2535718
https://doi.org/10.1109/ACCESS.2019.2896108
https://doi.org/10.1109/ACCESS.2019.2896108
https://doi.org/10.1109/ACCESS.2019.2896108
https://doi.org/10.1109/ACCESS.2019.2896108
https://arxiv.org/abs/2401.14527
https://dx.doi.org/10.1007/978-3-031-97629-2_15
https://dx.doi.org/10.1007/978-3-031-97629-2_15

